aboutsummaryrefslogtreecommitdiff
path: root/Computer_Vision_for_Industrial_Inspection/2/log_file.txt
blob: 0f0e284ef63e34fc1930d04e6b054c0c0d1651b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
Using TensorFlow backend.
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
WARNING:tensorflow:TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable  TF_ALLOW_IOLIBS=1.
WARNING: TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable  TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable  TF_ALLOW_IOLIBS=1.
WARNING: TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable  TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable  TF_ALLOW_IOLIBS=1.
WARNING: TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable  TF_ALLOW_IOLIBS=1.
/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/utils/helper.py:150: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def random_hue(img, max_delta=10.0):
/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/utils/helper.py:173: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def random_saturation(img, max_shift):
/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/utils/helper.py:183: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def random_contrast(img, center, max_contrast_scale):
/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/utils/helper.py:192: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def random_shift(x_img, shift_stddev):
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:44: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:44: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:46: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:46: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:157: The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.set_verbosity instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:157: The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.set_verbosity instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:157: The name tf.logging.INFO is deprecated. Please use tf.compat.v1.logging.INFO instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:157: The name tf.logging.INFO is deprecated. Please use tf.compat.v1.logging.INFO instead.

INFO: Loading experiment spec at /workspace/tao-experiments/spec_files/vgg19/config.txt.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:245: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:245: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/third_party/keras/tensorflow_backend.py:199: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/third_party/keras/tensorflow_backend.py:199: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/keras/optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.

WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:3295: The name tf.log is deprecated. Please use tf.math.log instead.

WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:3295: The name tf.log is deprecated. Please use tf.math.log instead.

INFO: Processing dataset (evaluation): /workspace/tao-experiments/data/val
INFO: Calculating per-class P/R and confusion matrix. It may take a while...
/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         (None, 3, 224, 224)       0         
_________________________________________________________________
block_1a_conv_1 (Conv2D)     (None, 64, 224, 224)      1728      
_________________________________________________________________
block_1a_relu (Activation)   (None, 64, 224, 224)      0         
_________________________________________________________________
block_1b_conv_1 (Conv2D)     (None, 64, 224, 224)      36864     
_________________________________________________________________
block_1b_relu (Activation)   (None, 64, 224, 224)      0         
_________________________________________________________________
block_2a_conv_1 (Conv2D)     (None, 128, 112, 112)     73728     
_________________________________________________________________
block_2a_relu (Activation)   (None, 128, 112, 112)     0         
_________________________________________________________________
block_2b_conv_1 (Conv2D)     (None, 128, 112, 112)     147456    
_________________________________________________________________
block_2b_relu (Activation)   (None, 128, 112, 112)     0         
_________________________________________________________________
block_3a_conv_1 (Conv2D)     (None, 256, 56, 56)       294912    
_________________________________________________________________
block_3a_relu (Activation)   (None, 256, 56, 56)       0         
_________________________________________________________________
block_3b_conv_1 (Conv2D)     (None, 256, 56, 56)       589824    
_________________________________________________________________
block_3b_relu (Activation)   (None, 256, 56, 56)       0         
_________________________________________________________________
block_3c_conv_1 (Conv2D)     (None, 256, 56, 56)       589824    
_________________________________________________________________
block_3c_relu (Activation)   (None, 256, 56, 56)       0         
_________________________________________________________________
block_3d_conv_1 (Conv2D)     (None, 256, 56, 56)       589824    
_________________________________________________________________
block_3d_relu (Activation)   (None, 256, 56, 56)       0         
_________________________________________________________________
block_4a_conv_1 (Conv2D)     (None, 512, 28, 28)       1179648   
_________________________________________________________________
block_4a_relu (Activation)   (None, 512, 28, 28)       0         
_________________________________________________________________
block_4b_conv_1 (Conv2D)     (None, 512, 28, 28)       2359296   
_________________________________________________________________
block_4b_relu (Activation)   (None, 512, 28, 28)       0         
_________________________________________________________________
block_4c_conv_1 (Conv2D)     (None, 512, 28, 28)       2359296   
_________________________________________________________________
block_4c_relu (Activation)   (None, 512, 28, 28)       0         
_________________________________________________________________
block_4d_conv_1 (Conv2D)     (None, 512, 28, 28)       2359296   
_________________________________________________________________
block_4d_relu (Activation)   (None, 512, 28, 28)       0         
_________________________________________________________________
block_5a_conv_1 (Conv2D)     (None, 512, 14, 14)       2359296   
_________________________________________________________________
block_5a_relu (Activation)   (None, 512, 14, 14)       0         
_________________________________________________________________
block_5b_conv_1 (Conv2D)     (None, 512, 14, 14)       2359296   
_________________________________________________________________
block_5b_relu (Activation)   (None, 512, 14, 14)       0         
_________________________________________________________________
block_5c_conv_1 (Conv2D)     (None, 512, 14, 14)       2359296   
_________________________________________________________________
block_5c_relu (Activation)   (None, 512, 14, 14)       0         
_________________________________________________________________
block_5d_conv_1 (Conv2D)     (None, 512, 14, 14)       2359296   
_________________________________________________________________
block_5d_relu (Activation)   (None, 512, 14, 14)       0         
_________________________________________________________________
avg_pool (AveragePooling2D)  (None, 512, 1, 1)         0         
_________________________________________________________________
flatten (Flatten)            (None, 512)               0         
_________________________________________________________________
predictions (Dense)          (None, 4)                 2052      
=================================================================
Total params: 20,020,932
Trainable params: 20,020,932
Non-trainable params: 0
_________________________________________________________________
Found 36 images belonging to 4 classes.
Evaluation Loss: 14.586379369099935
Evaluation Top K accuracy: 0.1111111111111111
Found 36 images belonging to 4 classes.
Confusion Matrix
[[ 0 30  0]
 [ 0  4  0]
 [ 0  2  0]]
Classification Report
              precision    recall  f1-score   support

           C       0.00      0.00      0.00        30
           Q       0.00      0.00      0.00         0
           R       0.11      1.00      0.20         4
           U       0.00      0.00      0.00         2

   micro avg       0.11      0.11      0.11        36
   macro avg       0.03      0.25      0.05        36
weighted avg       0.01      0.11      0.02        36