aboutsummaryrefslogtreecommitdiff
path: root/Fundamentals_of_Accelerated_Data_Science/3-05_knn.md
diff options
context:
space:
mode:
Diffstat (limited to 'Fundamentals_of_Accelerated_Data_Science/3-05_knn.md')
-rw-r--r--Fundamentals_of_Accelerated_Data_Science/3-05_knn.md19
1 files changed, 19 insertions, 0 deletions
diff --git a/Fundamentals_of_Accelerated_Data_Science/3-05_knn.md b/Fundamentals_of_Accelerated_Data_Science/3-05_knn.md
new file mode 100644
index 0000000..5fdf591
--- /dev/null
+++ b/Fundamentals_of_Accelerated_Data_Science/3-05_knn.md
@@ -0,0 +1,19 @@
+lazy learner
+деревья для поиска ближайших значений (KD, Q, R, Ball)
+
+- k-dimensional tree
+Recursively splits data along coordinate axes.
+at each node pick a dimension, split at median, each node becomes a hyperrectangle in d-dimensional space.
+
+- Quad-Tree
+Each node is a square region. If too many points fall into a region subdivide into 4 equal quadrants
+
+- rectangle tree
+Each node stores several children, each with a Minimum Bounding Rectangle covering many points or objects. Subtrees group spatially close objects. Insertions try to minimize rectangle enlargement.
+
+- Ball-Tree
+Each node contains:
+ - a center point
+ - a radius enclosing all points in that node
+Two children represent two balls that split the data
+