aboutsummaryrefslogtreecommitdiff
path: root/Fundamentals_of_Accelerated_Data_Science/3-04_logistic_regression.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Fundamentals_of_Accelerated_Data_Science/3-04_logistic_regression.ipynb')
-rw-r--r--Fundamentals_of_Accelerated_Data_Science/3-04_logistic_regression.ipynb11
1 files changed, 10 insertions, 1 deletions
diff --git a/Fundamentals_of_Accelerated_Data_Science/3-04_logistic_regression.ipynb b/Fundamentals_of_Accelerated_Data_Science/3-04_logistic_regression.ipynb
index 3890ea7..4e4b2ab 100644
--- a/Fundamentals_of_Accelerated_Data_Science/3-04_logistic_regression.ipynb
+++ b/Fundamentals_of_Accelerated_Data_Science/3-04_logistic_regression.ipynb
@@ -205,7 +205,9 @@
"## Logistic Regression ##\n",
"Logistic regression can be used to estimate the probability of an outcome as a function of some (assumed independent) inputs. In our case, we would like to estimate infection risk based on population members' age and sex.\n",
"\n",
- "Below we train a logistic regresion model. We first create a cuML logistic regression instance `logreg`. The `logreg.fit` method takes 2 arguments: the model's independent variables *X*, and the dependent variable *y*. Fit the `logreg` model using the `gdf` columns `age` and `sex` as *X* and the `infected` column as *y*."
+ "Below we train a logistic regresion model. We first create a cuML logistic regression instance `logreg`. The `logreg.fit` method takes 2 arguments: the model's independent variables *X*, and the dependent variable *y*. Fit the `logreg` model using the `gdf` columns `age` and `sex` as *X* and the `infected` column as *y*.\n",
+ "\n",
+ "1/(1+e^{-z}) sigmoid"
]
},
{
@@ -637,6 +639,13 @@
]
},
{
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
"cell_type": "markdown",
"metadata": {},
"source": [