aboutsummaryrefslogtreecommitdiff
path: root/R_LogR
diff options
context:
space:
mode:
authorleshe4ka46 <alex9102naid1@ya.ru>2025-12-13 19:41:40 +0300
committerleshe4ka46 <alex9102naid1@ya.ru>2025-12-13 19:41:40 +0300
commit175ac10904d0f31c3ffeeeed507c8914f13d0b15 (patch)
tree671c68a03354c5084470c5cfcfd4fe87aae2aff8 /R_LogR
parent72b4edeadeafc9c54b3db9b0961a45da3d07b77c (diff)
linr, logr
Diffstat (limited to 'R_LogR')
-rw-r--r--R_LogR/Rplots.pdfbin0 -> 11835 bytes
-rw-r--r--R_LogR/asset-v1_MEPhIx+CSA12AI+2019Spring+type@asset+block@mlclass-ex2.zipbin0 -> 245817 bytes
-rw-r--r--R_LogR/ex2.pdfbin0 -> 258794 bytes
-rwxr-xr-xR_LogR/main.r41
-rw-r--r--R_LogR/mlclass-ex2/costFunction.m35
-rw-r--r--R_LogR/mlclass-ex2/costFunctionReg.m36
-rw-r--r--R_LogR/mlclass-ex2/ex2.m135
-rw-r--r--R_LogR/mlclass-ex2/ex2_reg.m117
-rw-r--r--R_LogR/mlclass-ex2/mapFeature.m21
-rw-r--r--R_LogR/mlclass-ex2/plotData.m33
-rw-r--r--R_LogR/mlclass-ex2/plotDecisionBoundary.m49
-rw-r--r--R_LogR/mlclass-ex2/predict.m32
-rw-r--r--R_LogR/mlclass-ex2/sigmoid.m18
-rw-r--r--R_LogR/mlclass-ex2/submit.m333
-rw-r--r--R_LogR/mlclass-ex2/submitWeb.m349
-rw-r--r--R_LogR/survey.csv751
16 files changed, 1950 insertions, 0 deletions
diff --git a/R_LogR/Rplots.pdf b/R_LogR/Rplots.pdf
new file mode 100644
index 0000000..5a71719
--- /dev/null
+++ b/R_LogR/Rplots.pdf
Binary files differ
diff --git a/R_LogR/asset-v1_MEPhIx+CSA12AI+2019Spring+type@asset+block@mlclass-ex2.zip b/R_LogR/asset-v1_MEPhIx+CSA12AI+2019Spring+type@asset+block@mlclass-ex2.zip
new file mode 100644
index 0000000..36ed86a
--- /dev/null
+++ b/R_LogR/asset-v1_MEPhIx+CSA12AI+2019Spring+type@asset+block@mlclass-ex2.zip
Binary files differ
diff --git a/R_LogR/ex2.pdf b/R_LogR/ex2.pdf
new file mode 100644
index 0000000..78d3d35
--- /dev/null
+++ b/R_LogR/ex2.pdf
Binary files differ
diff --git a/R_LogR/main.r b/R_LogR/main.r
new file mode 100755
index 0000000..748b0f4
--- /dev/null
+++ b/R_LogR/main.r
@@ -0,0 +1,41 @@
+#!/usr/bin/env Rscript
+
+# https://www.r-bloggers.com/2015/09/how-to-perform-a-logistic-regression-in-r/
+
+data <- read.csv("survey.csv")
+
+
+str(data)
+head(data)
+
+data$price20 <- ifelse(data$Price == 20, 1, 0)
+data$price30 <- ifelse(data$Price == 30, 1, 0)
+head(data)
+
+model <- glm(
+ MYDEPV ~ Income + Age + price20 + price30,
+ family = binomial(link = "logit"),
+ data = data
+)
+summary(model)
+
+coef(model)
+
+plot(data$Income, data$MYDEPV)
+
+
+test_dat <- data.frame(Income = seq(20, 100, 1), Age = 20, price20 = 1, price30 = 0)
+pred <- predict(model, newdata = test_dat, type = "response")
+
+lines(test_dat$Income, pred, col = "blue", lwd = 2)
+
+
+new_data3 <- data.frame(
+ Income = c(58),
+ Age = c(25),
+ price20 = c(1),
+ price30 = c(0)
+)
+
+predicted <- predict(model, newdata = new_data3)
+print(1 / (1 + exp(-predicted)))
diff --git a/R_LogR/mlclass-ex2/costFunction.m b/R_LogR/mlclass-ex2/costFunction.m
new file mode 100644
index 0000000..6e6118c
--- /dev/null
+++ b/R_LogR/mlclass-ex2/costFunction.m
@@ -0,0 +1,35 @@
+function [J, grad] = costFunction(theta, X, y)
+%COSTFUNCTION Compute cost and gradient for logistic regression
+% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
+% parameter for logistic regression and the gradient of the cost
+% w.r.t. to the parameters.
+
+% Initialize some useful values
+m = length(y); % number of training examples
+
+% You need to return the following variables correctly
+% J = 0;
+% grad = zeros(size(theta));
+
+% ====================== YOUR CODE HERE ======================
+% Instructions: Compute the cost of a particular choice of theta.
+% You should set J to the cost.
+% Compute the partial derivatives and set grad to the partial
+% derivatives of the cost w.r.t. each parameter in theta
+%
+% Note: grad should have the same dimensions as theta
+%
+
+pred = sigmoid(X*theta);
+
+% J = 1 /m .* sum(-y .* log(pred) - (1-y) .* log(1-pred));
+
+% grad = 1 / m .* (X' * (pred - y));
+
+J = (1 / (2*m)) * sum((pred - y).^2);
+
+grad = (1 / m) * X' * (pred - y);
+
+% =============================================================
+
+end
diff --git a/R_LogR/mlclass-ex2/costFunctionReg.m b/R_LogR/mlclass-ex2/costFunctionReg.m
new file mode 100644
index 0000000..cc73386
--- /dev/null
+++ b/R_LogR/mlclass-ex2/costFunctionReg.m
@@ -0,0 +1,36 @@
+function [J, grad] = costFunctionReg(theta, X, y, lambda)
+%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
+% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
+% theta as the parameter for regularized logistic regression and the
+% gradient of the cost w.r.t. to the parameters.
+
+% Initialize some useful values
+m = length(y); % number of training examples
+
+% You need to return the following variables correctly
+% J = 0;
+% grad = zeros(size(theta));
+
+% ====================== YOUR CODE HERE ======================
+% Instructions: Compute the cost of a particular choice of theta.
+% You should set J to the cost.
+% Compute the partial derivatives and set grad to the partial
+% derivatives of the cost w.r.t. each parameter in theta
+
+
+pred = sigmoid(X*theta);
+
+J = 1./m .* sum(-y .* log(pred) - (1-y) .* log(1-pred)) + lambda ./ 2 ./ m .* sum(theta.^2);
+
+
+reg = lambda .* theta ./ m;
+reg(1) = 0;
+grad = 1 / m .* (X' * (pred - y)) + reg;
+
+
+
+
+
+% =============================================================
+
+end
diff --git a/R_LogR/mlclass-ex2/ex2.m b/R_LogR/mlclass-ex2/ex2.m
new file mode 100644
index 0000000..c0a7774
--- /dev/null
+++ b/R_LogR/mlclass-ex2/ex2.m
@@ -0,0 +1,135 @@
+%% Machine Learning Online Class - Exercise 2: Logistic Regression
+%
+% Instructions
+% ------------
+%
+% This file contains code that helps you get started on the logistic
+% regression exercise. You will need to complete the following functions
+% in this exericse:
+%
+% sigmoid.m
+% costFunction.m
+% predict.m
+% costFunctionReg.m
+%
+% For this exercise, you will not need to change any code in this file,
+% or any other files other than those mentioned above.
+%
+
+%% Initialization
+clear ; close all; clc
+
+%% Load Data
+% The first two columns contains the exam scores and the third column
+% contains the label.
+
+data = load('ex2data1.txt');
+X = data(:, [1, 2]); y = data(:, 3);
+
+%% ==================== Part 1: Plotting ====================
+% We start the exercise by first plotting the data to understand the
+% the problem we are working with.
+
+fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...
+ 'indicating (y = 0) examples.\n']);
+
+plotData(X, y);
+
+% Put some labels
+hold on;
+% Labels and Legend
+xlabel('Exam 1 score')
+ylabel('Exam 2 score')
+
+% Specified in plot order
+% legend('Admitted', 'Not admitted')
+hold off;
+
+fprintf('\nProgram paused. Press enter to continue.\n');
+pause;
+
+
+%% ============ Part 2: Compute Cost and Gradient ============
+% In this part of the exercise, you will implement the cost and gradient
+% for logistic regression. You neeed to complete the code in
+% costFunction.m
+
+% Setup the data matrix appropriately, and add ones for the intercept term
+[m, n] = size(X);
+
+% Add intercept term to x and X_test
+X = [ones(m, 1) X];
+
+% Initialize fitting parameters
+initial_theta = zeros(n + 1, 1);
+
+% Compute and display initial cost and gradient
+[cost, grad] = costFunction(initial_theta, X, y);
+
+fprintf('Cost at initial theta (zeros): %f\n', cost);
+fprintf('Gradient at initial theta (zeros): \n');
+fprintf(' %f \n', grad);
+
+fprintf('\nProgram paused. Press enter to continue.\n');
+%pause;
+
+
+%% ============= Part 3: Optimizing using fminunc =============
+% In this exercise, you will use a built-in function (fminunc) to find the
+% optimal parameters theta.
+
+% Set options for fminunc
+options = optimset('GradObj', 'on', 'MaxIter', 400);
+
+% Run fminunc to obtain the optimal theta
+% This function will return theta and the cost
+[theta, cost] = ...
+ fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
+
+% Print theta to screen
+fprintf('Cost at theta found by fminunc: %f\n', cost);
+fprintf('theta: \n');
+fprintf(' %f \n', theta);
+
+% Plot Boundary
+plotDecisionBoundary(theta, X, y);
+
+% Put some labels
+hold on;
+% Labels and Legend
+xlabel('Exam 1 score')
+ylabel('Exam 2 score')
+
+% Specified in plot order
+legend('Admitted', 'Not admitted')
+hold off;
+
+fprintf('\nProgram paused. Press enter to continue.\n');
+%pause;
+
+%% ============== Part 4: Predict and Accuracies ==============
+% After learning the parameters, you'll like to use it to predict the outcomes
+% on unseen data. In this part, you will use the logistic regression model
+% to predict the probability that a student with score 20 on exam 1 and
+% score 80 on exam 2 will be admitted.
+%
+% Furthermore, you will compute the training and test set accuracies of
+% our model.
+%
+% Your task is to complete the code in predict.m
+
+% Predict probability for a student with score 45 on exam 1
+% and score 85 on exam 2
+
+prob = sigmoid([1 45 85] * theta);
+fprintf(['For a student with scores 45 and 85, we predict an admission ' ...
+ 'probability of %f\n\n'], prob);
+
+% Compute accuracy on our training set
+p = predict(theta, X);
+
+fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
+
+fprintf('\nProgram paused. Press enter to continue.\n');
+%pause;
+
diff --git a/R_LogR/mlclass-ex2/ex2_reg.m b/R_LogR/mlclass-ex2/ex2_reg.m
new file mode 100644
index 0000000..a7b95c2
--- /dev/null
+++ b/R_LogR/mlclass-ex2/ex2_reg.m
@@ -0,0 +1,117 @@
+%% Machine Learning Online Class - Exercise 2: Logistic Regression
+%
+% Instructions
+% ------------
+%
+% This file contains code that helps you get started on the second part
+% of the exercise which covers regularization with logistic regression.
+%
+% You will need to complete the following functions in this exericse:
+%
+% sigmoid.m
+% costFunction.m
+% predict.m
+% costFunctionReg.m
+%
+% For this exercise, you will not need to change any code in this file,
+% or any other files other than those mentioned above.
+%
+
+%% Initialization
+clear ; close all; clc
+
+%% Load Data
+% The first two columns contains the exam scores and the third column
+% contains the label.
+
+data = load('ex2data2.txt');
+X = data(:, [1, 2]); y = data(:, 3);
+
+plotData(X, y);
+
+% Put some labels
+hold on;
+
+% Labels and Legend
+xlabel('Microchip Test 1')
+ylabel('Microchip Test 2')
+
+% Specified in plot order
+legend('y = 1', 'y = 0')
+hold off;
+
+
+%% =========== Part 1: Regularized Logistic Regression ============
+% In this part, you are given a dataset with data points that are not
+% linearly separable. However, you would still like to use logistic
+% regression to classify the data points.
+%
+% To do so, you introduce more features to use -- in particular, you add
+% polynomial features to our data matrix (similar to polynomial
+% regression).
+%
+
+% Add Polynomial Features
+
+% Note that mapFeature also adds a column of ones for us, so the intercept
+% term is handled
+X = mapFeature(X(:,1), X(:,2));
+
+% Initialize fitting parameters
+initial_theta = zeros(size(X, 2), 1);
+
+% Set regularization parameter lambda to 1
+lambda = 1;
+
+% Compute and display initial cost and gradient for regularized logistic
+% regression
+[cost, grad] = costFunctionReg(initial_theta, X, y, lambda);
+
+fprintf('Cost at initial theta (zeros): %f\n', cost);
+
+fprintf('\nProgram paused. Press enter to continue.\n');
+% pause;
+
+%% ============= Part 2: Regularization and Accuracies =============
+% Optional Exercise:
+% In this part, you will get to try different values of lambda and
+% see how regularization affects the decision coundart
+%
+% Try the following values of lambda (0, 1, 10, 100).
+%
+% How does the decision boundary change when you vary lambda? How does
+% the training set accuracy vary?
+%
+
+% Initialize fitting parameters
+initial_theta = zeros(size(X, 2), 1);
+
+% Set regularization parameter lambda to 1 (you should vary this)
+lambda = 0.1;
+
+% Set Options
+options = optimset('GradObj', 'on', 'MaxIter', 400);
+
+% Optimize
+[theta, J, exit_flag] = ...
+ fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);
+
+% Plot Boundary
+plotDecisionBoundary(theta, X, y);
+hold on;
+title(sprintf('lambda = %g', lambda))
+
+% Labels and Legend
+xlabel('Microchip Test 1')
+ylabel('Microchip Test 2')
+
+legend('y = 1', 'y = 0', 'Decision boundary')
+hold off;
+
+% Compute accuracy on our training set
+p = predict(theta, X);
+
+fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
+
+
+
diff --git a/R_LogR/mlclass-ex2/mapFeature.m b/R_LogR/mlclass-ex2/mapFeature.m
new file mode 100644
index 0000000..d02a72a
--- /dev/null
+++ b/R_LogR/mlclass-ex2/mapFeature.m
@@ -0,0 +1,21 @@
+function out = mapFeature(X1, X2)
+% MAPFEATURE Feature mapping function to polynomial features
+%
+% MAPFEATURE(X1, X2) maps the two input features
+% to quadratic features used in the regularization exercise.
+%
+% Returns a new feature array with more features, comprising of
+% X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc..
+%
+% Inputs X1, X2 must be the same size
+%
+
+degree = 6;
+out = ones(size(X1(:,1)));
+for i = 1:degree
+ for j = 0:i
+ out(:, end+1) = (X1.^(i-j)).*(X2.^j);
+ end
+end
+
+end \ No newline at end of file
diff --git a/R_LogR/mlclass-ex2/plotData.m b/R_LogR/mlclass-ex2/plotData.m
new file mode 100644
index 0000000..2eda757
--- /dev/null
+++ b/R_LogR/mlclass-ex2/plotData.m
@@ -0,0 +1,33 @@
+function plotData(X, y)
+%PLOTDATA Plots the data points X and y into a new figure
+% PLOTDATA(x,y) plots the data points with + for the positive examples
+% and o for the negative examples. X is assumed to be a Mx2 matrix.
+
+% Create New Figure
+figure; hold on;
+
+% ====================== YOUR CODE HERE ======================
+% Instructions: Plot the positive and negative examples on a
+% 2D plot, using the option 'k+' for the positive
+% examples and 'ko' for the negative examples.
+%
+
+#positive_vals = find(y == 1);
+#negative_vals = find(y == 0);
+
+
+#plot(X(positive_vals, 1), X(positive_vals, 2), 'k+', 'MarkerSize', 7);
+#plot(X(negative_vals, 1), X(negative_vals, 2), 'ko', 'MarkerSize', 7);
+
+
+pos = find(y==1); neg = find(y == 0);
+plot(X(pos, 1), X(pos, 2), 'k+', 'MarkerSize', 7);
+plot(X(neg, 1), X(neg, 2), 'ko', 'MarkerSize', 7);
+
+% =========================================================================
+
+
+
+hold off;
+
+end
diff --git a/R_LogR/mlclass-ex2/plotDecisionBoundary.m b/R_LogR/mlclass-ex2/plotDecisionBoundary.m
new file mode 100644
index 0000000..cfdf3e4
--- /dev/null
+++ b/R_LogR/mlclass-ex2/plotDecisionBoundary.m
@@ -0,0 +1,49 @@
+function plotDecisionBoundary(theta, X, y)
+%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
+%the decision boundary defined by theta
+% PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the
+% positive examples and o for the negative examples. X is assumed to be
+% a either
+% 1) Mx3 matrix, where the first column is an all-ones column for the
+% intercept.
+% 2) MxN, N>3 matrix, where the first column is all-ones
+
+% Plot Data
+plotData(X(:,2:3), y);
+hold on
+
+if size(X, 2) <= 3
+ % Only need 2 points to define a line, so choose two endpoints
+ plot_x = [min(X(:,2))-2, max(X(:,2))+2];
+
+ % Calculate the decision boundary line
+ plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1));
+
+ % Plot, and adjust axes for better viewing
+ plot(plot_x, plot_y)
+
+ % Legend, specific for the exercise
+ legend('Admitted', 'Not admitted', 'Decision Boundary')
+ axis([30, 100, 30, 100])
+else
+ % Here is the grid range
+ u = linspace(-1, 1.5, 50);
+ v = linspace(-1, 1.5, 50);
+
+ z = zeros(length(u), length(v));
+ % Evaluate z = theta*x over the grid
+ for i = 1:length(u)
+ for j = 1:length(v)
+ z(i,j) = mapFeature(u(i), v(j))*theta;
+ end
+ end
+ z = z'; % important to transpose z before calling contour
+
+ % Plot z = 0
+ % Notice you need to specify the range [0, 0]
+ contour(u, v, z, [0, 0], 'LineWidth', 2)
+end
+hold off
+
+end
+
diff --git a/R_LogR/mlclass-ex2/predict.m b/R_LogR/mlclass-ex2/predict.m
new file mode 100644
index 0000000..7af3a20
--- /dev/null
+++ b/R_LogR/mlclass-ex2/predict.m
@@ -0,0 +1,32 @@
+function p = predict(theta, X)
+%PREDICT Predict whether the label is 0 or 1 using learned logistic
+%regression parameters theta
+% p = PREDICT(theta, X) computes the predictions for X using a
+% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
+
+m = size(X, 1); % Number of training examples
+
+% You need to return the following variables correctly
+p = zeros(m, 1);
+
+% ====================== YOUR CODE HERE ======================
+% Instructions: Complete the following code to make predictions using
+% your learned logistic regression parameters.
+% You should set p to a vector of 0's and 1's
+%
+thresh = 0.5
+
+pred = sigmoid(X * theta);
+for i = 1:m
+ if pred(i) >= thresh
+ p(i) = 1;
+ else
+ p(i) = 0;
+ endif
+
+
+
+% =========================================================================
+
+
+end
diff --git a/R_LogR/mlclass-ex2/sigmoid.m b/R_LogR/mlclass-ex2/sigmoid.m
new file mode 100644
index 0000000..a79fccd
--- /dev/null
+++ b/R_LogR/mlclass-ex2/sigmoid.m
@@ -0,0 +1,18 @@
+function g = sigmoid(z)
+%SIGMOID Compute sigmoid functoon
+% J = SIGMOID(z) computes the sigmoid of z.
+
+% You need to return the following variables correctly
+% g = zeros(size(z));
+
+% ====================== YOUR CODE HERE ======================
+% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
+% vector or scalar).
+
+
+g = 1 ./ (1 + exp(-z));
+
+
+% =============================================================
+
+end
diff --git a/R_LogR/mlclass-ex2/submit.m b/R_LogR/mlclass-ex2/submit.m
new file mode 100644
index 0000000..224a541
--- /dev/null
+++ b/R_LogR/mlclass-ex2/submit.m
@@ -0,0 +1,333 @@
+function submit(partId)
+%SUBMIT Submit your code and output to the ml-class servers
+% SUBMIT() will connect to the ml-class server and submit your solution
+
+ fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
+ homework_id());
+ if ~exist('partId', 'var') || isempty(partId)
+ partId = promptPart();
+ end
+
+ % Check valid partId
+ partNames = validParts();
+ if ~isValidPartId(partId)
+ fprintf('!! Invalid homework part selected.\n');
+ fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1);
+ fprintf('!! Submission Cancelled\n');
+ return
+ end
+
+ [login password] = loginPrompt();
+ if isempty(login)
+ fprintf('!! Submission Cancelled\n');
+ return
+ end
+
+ fprintf('\n== Connecting to ml-class ... ');
+ if exist('OCTAVE_VERSION')
+ fflush(stdout);
+ end
+
+ % Setup submit list
+ if partId == numel(partNames) + 1
+ submitParts = 1:numel(partNames);
+ else
+ submitParts = [partId];
+ end
+
+ for s = 1:numel(submitParts)
+ % Submit this part
+ partId = submitParts(s);
+
+ % Get Challenge
+ [login, ch, signature] = getChallenge(login);
+ if isempty(login) || isempty(ch) || isempty(signature)
+ % Some error occured, error string in first return element.
+ fprintf('\n!! Error: %s\n\n', login);
+ return
+ end
+
+ % Attempt Submission with Challenge
+ ch_resp = challengeResponse(login, password, ch);
+ [result, str] = submitSolution(login, ch_resp, partId, output(partId), ...
+ source(partId), signature);
+
+ fprintf('\n== [ml-class] Submitted Homework %s - Part %d - %s\n', ...
+ homework_id(), partId, partNames{partId});
+ fprintf('== %s\n', strtrim(str));
+ if exist('OCTAVE_VERSION')
+ fflush(stdout);
+ end
+ end
+
+end
+
+% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
+
+function id = homework_id()
+ id = '2';
+end
+
+function [partNames] = validParts()
+ partNames = { 'Sigmoid Function ', ...
+ 'Logistic Regression Cost', ...
+ 'Logistic Regression Gradient', ...
+ 'Predict', ...
+ 'Regularized Logistic Regression Cost' ...
+ 'Regularized Logistic Regression Gradient' ...
+ };
+end
+
+function srcs = sources()
+ % Separated by part
+ srcs = { { 'sigmoid.m' }, ...
+ { 'costFunction.m' }, ...
+ { 'costFunction.m' }, ...
+ { 'predict.m' }, ...
+ { 'costFunctionReg.m' }, ...
+ { 'costFunctionReg.m' } };
+end
+
+function out = output(partId)
+ % Random Test Cases
+ X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
+ y = sin(X(:,1) + X(:,2)) > 0;
+ if partId == 1
+ out = sprintf('%0.5f ', sigmoid(X));
+ elseif partId == 2
+ out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
+ elseif partId == 3
+ [cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
+ out = sprintf('%0.5f ', grad);
+ elseif partId == 4
+ out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
+ elseif partId == 5
+ out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
+ elseif partId == 6
+ [cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
+ out = sprintf('%0.5f ', grad);
+ end
+end
+
+function url = challenge_url()
+ url = 'http://www.ml-class.org/course/homework/challenge';
+end
+
+function url = submit_url()
+ url = 'http://www.ml-class.org/course/homework/submit';
+end
+
+% ========================= CHALLENGE HELPERS =========================
+
+function src = source(partId)
+ src = '';
+ src_files = sources();
+ if partId <= numel(src_files)
+ flist = src_files{partId};
+ for i = 1:numel(flist)
+ fid = fopen(flist{i});
+ while ~feof(fid)
+ line = fgets(fid);
+ src = [src line];
+ end
+ fclose(fid);
+ src = [src '||||||||'];
+ end
+ end
+end
+
+function ret = isValidPartId(partId)
+ partNames = validParts();
+ ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1);
+end
+
+function partId = promptPart()
+ fprintf('== Select which part(s) to submit:\n', ...
+ homework_id());
+ partNames = validParts();
+ srcFiles = sources();
+ for i = 1:numel(partNames)
+ fprintf('== %d) %s [', i, partNames{i});
+ fprintf(' %s ', srcFiles{i}{:});
+ fprintf(']\n');
+ end
+ fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ...
+ numel(partNames) + 1, numel(partNames) + 1);
+ selPart = input('', 's');
+ partId = str2num(selPart);
+ if ~isValidPartId(partId)
+ partId = -1;
+ end
+end
+
+function [email,ch,signature] = getChallenge(email)
+ str = urlread(challenge_url(), 'post', {'email_address', email});
+
+ str = strtrim(str);
+ [email, str] = strtok (str, '|');
+ [ch, str] = strtok (str, '|');
+ [signature, str] = strtok (str, '|');
+end
+
+
+function [result, str] = submitSolution(email, ch_resp, part, output, ...
+ source, signature)
+
+ params = {'homework', homework_id(), ...
+ 'part', num2str(part), ...
+ 'email', email, ...
+ 'output', output, ...
+ 'source', source, ...
+ 'challenge_response', ch_resp, ...
+ 'signature', signature};
+
+ str = urlread(submit_url(), 'post', params);
+
+ % Parse str to read for success / failure
+ result = 0;
+
+end
+
+% =========================== LOGIN HELPERS ===========================
+
+function [login password] = loginPrompt()
+ % Prompt for password
+ [login password] = basicPrompt();
+
+ if isempty(login) || isempty(password)
+ login = []; password = [];
+ end
+end
+
+
+function [login password] = basicPrompt()
+ login = input('Login (Email address): ', 's');
+ password = input('Password: ', 's');
+end
+
+
+function [str] = challengeResponse(email, passwd, challenge)
+ salt = ')~/|]QMB3[!W`?OVt7qC"@+}';
+ str = sha1([challenge sha1([salt email passwd])]);
+ sel = randperm(numel(str));
+ sel = sort(sel(1:16));
+ str = str(sel);
+end
+
+
+% =============================== SHA-1 ================================
+
+function hash = sha1(str)
+
+ % Initialize variables
+ h0 = uint32(1732584193);
+ h1 = uint32(4023233417);
+ h2 = uint32(2562383102);
+ h3 = uint32(271733878);
+ h4 = uint32(3285377520);
+
+ % Convert to word array
+ strlen = numel(str);
+
+ % Break string into chars and append the bit 1 to the message
+ mC = [double(str) 128];
+ mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')];
+
+ numB = strlen * 8;
+ if exist('idivide')
+ numC = idivide(uint32(numB + 65), 512, 'ceil');
+ else
+ numC = ceil(double(numB + 65)/512);
+ end
+ numW = numC * 16;
+ mW = zeros(numW, 1, 'uint32');
+
+ idx = 1;
+ for i = 1:4:strlen + 1
+ mW(idx) = bitor(bitor(bitor( ...
+ bitshift(uint32(mC(i)), 24), ...
+ bitshift(uint32(mC(i+1)), 16)), ...
+ bitshift(uint32(mC(i+2)), 8)), ...
+ uint32(mC(i+3)));
+ idx = idx + 1;
+ end
+
+ % Append length of message
+ mW(numW - 1) = uint32(bitshift(uint64(numB), -32));
+ mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32));
+
+ % Process the message in successive 512-bit chs
+ for cId = 1 : double(numC)
+ cSt = (cId - 1) * 16 + 1;
+ cEnd = cId * 16;
+ ch = mW(cSt : cEnd);
+
+ % Extend the sixteen 32-bit words into eighty 32-bit words
+ for j = 17 : 80
+ ch(j) = ch(j - 3);
+ ch(j) = bitxor(ch(j), ch(j - 8));
+ ch(j) = bitxor(ch(j), ch(j - 14));
+ ch(j) = bitxor(ch(j), ch(j - 16));
+ ch(j) = bitrotate(ch(j), 1);
+ end
+
+ % Initialize hash value for this ch
+ a = h0;
+ b = h1;
+ c = h2;
+ d = h3;
+ e = h4;
+
+ % Main loop
+ for i = 1 : 80
+ if(i >= 1 && i <= 20)
+ f = bitor(bitand(b, c), bitand(bitcmp(b), d));
+ k = uint32(1518500249);
+ elseif(i >= 21 && i <= 40)
+ f = bitxor(bitxor(b, c), d);
+ k = uint32(1859775393);
+ elseif(i >= 41 && i <= 60)
+ f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d));
+ k = uint32(2400959708);
+ elseif(i >= 61 && i <= 80)
+ f = bitxor(bitxor(b, c), d);
+ k = uint32(3395469782);
+ end
+
+ t = bitrotate(a, 5);
+ t = bitadd(t, f);
+ t = bitadd(t, e);
+ t = bitadd(t, k);
+ t = bitadd(t, ch(i));
+ e = d;
+ d = c;
+ c = bitrotate(b, 30);
+ b = a;
+ a = t;
+
+ end
+ h0 = bitadd(h0, a);
+ h1 = bitadd(h1, b);
+ h2 = bitadd(h2, c);
+ h3 = bitadd(h3, d);
+ h4 = bitadd(h4, e);
+
+ end
+
+ hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]);
+
+ hash = lower(hash);
+
+end
+
+function ret = bitadd(iA, iB)
+ ret = double(iA) + double(iB);
+ ret = bitset(ret, 33, 0);
+ ret = uint32(ret);
+end
+
+function ret = bitrotate(iA, places)
+ t = bitshift(iA, places - 32);
+ ret = bitshift(iA, places);
+ ret = bitor(ret, t);
+end
diff --git a/R_LogR/mlclass-ex2/submitWeb.m b/R_LogR/mlclass-ex2/submitWeb.m
new file mode 100644
index 0000000..22688ac
--- /dev/null
+++ b/R_LogR/mlclass-ex2/submitWeb.m
@@ -0,0 +1,349 @@
+function submitWeb(partId)
+%SUBMITWEB Generates a base64 encoded string for web-based submissions
+% SUBMITWEB() will generate a base64 encoded string so that you can submit your
+% solutions via a web form
+
+ fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ...
+ homework_id());
+ if ~exist('partId', 'var') || isempty(partId)
+ partId = promptPart();
+ end
+
+ % Check valid partId
+ partNames = validParts();
+ if ~isValidPartId(partId)
+ fprintf('!! Invalid homework part selected.\n');
+ fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames));
+ fprintf('!! Submission Cancelled\n');
+ return
+ end
+
+ [login] = loginPrompt();
+ if isempty(login)
+ fprintf('!! Submission Cancelled\n');
+ return
+ end
+
+ [result] = submitSolution(login, partId, output(partId), ...
+ source(partId));
+ result = base64encode(result);
+
+ fprintf('\nSave as submission file [submit_ex%s_part%d.txt]: ', ...
+ homework_id(), partId);
+ saveAsFile = input('', 's');
+ if (isempty(saveAsFile))
+ saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), partId);
+ end
+
+ fid = fopen(saveAsFile, 'w');
+ if (fid)
+ fwrite(fid, result);
+ fclose(fid);
+ fprintf('\nSaved your solutions to %s.\n\n', saveAsFile);
+ fprintf(['You can now submit your solutions through the web \n' ...
+ 'form in the programming exercises. Select the corresponding \n' ...
+ 'programming exercise to access the form.\n']);
+
+ else
+ fprintf('Unable to save to %s\n\n', saveAsFile);
+ fprintf(['You can create a submission file by saving the \n' ...
+ 'following text in a file: (press enter to continue)\n\n']);
+ pause;
+ fprintf(result);
+ end
+
+end
+
+% ================== CONFIGURABLES FOR EACH HOMEWORK ==================
+
+function id = homework_id()
+ id = '2';
+end
+
+function [partNames] = validParts()
+ partNames = { 'Sigmoid Function ', ...
+ 'Logistic Regression Cost', ...
+ 'Logistic Regression Gradient', ...
+ 'Predict', ...
+ 'Regularized Logistic Regression Cost' ...
+ 'Regularized Logistic Regression Gradient' ...
+ };
+end
+
+function srcs = sources()
+ % Separated by part
+ srcs = { { 'sigmoid.m' }, ...
+ { 'costFunction.m' }, ...
+ { 'costFunction.m' }, ...
+ { 'predict.m' }, ...
+ { 'costFunctionReg.m' }, ...
+ { 'costFunctionReg.m' } };
+end
+
+function out = output(partId)
+ % Random Test Cases
+ X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
+ y = sin(X(:,1) + X(:,2)) > 0;
+ if partId == 1
+ out = sprintf('%0.5f ', sigmoid(X));
+ elseif partId == 2
+ out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
+ elseif partId == 3
+ [cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
+ out = sprintf('%0.5f ', grad);
+ elseif partId == 4
+ out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
+ elseif partId == 5
+ out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
+ elseif partId == 6
+ [cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
+ out = sprintf('%0.5f ', grad);
+ end
+end
+
+
+% ========================= SUBMIT HELPERS =========================
+
+function src = source(partId)
+ src = '';
+ src_files = sources();
+ if partId <= numel(src_files)
+ flist = src_files{partId};
+ for i = 1:numel(flist)
+ fid = fopen(flist{i});
+ while ~feof(fid)
+ line = fgets(fid);
+ src = [src line];
+ end
+ fclose(fid);
+ src = [src '||||||||'];
+ end
+ end
+end
+
+function ret = isValidPartId(partId)
+ partNames = validParts();
+ ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames));
+end
+
+function partId = promptPart()
+ fprintf('== Select which part(s) to submit:\n', ...
+ homework_id());
+ partNames = validParts();
+ srcFiles = sources();
+ for i = 1:numel(partNames)
+ fprintf('== %d) %s [', i, partNames{i});
+ fprintf(' %s ', srcFiles{i}{:});
+ fprintf(']\n');
+ end
+ fprintf('\nEnter your choice [1-%d]: ', ...
+ numel(partNames));
+ selPart = input('', 's');
+ partId = str2num(selPart);
+ if ~isValidPartId(partId)
+ partId = -1;
+ end
+end
+
+
+function [result, str] = submitSolution(email, part, output, source)
+
+ result = ['a:5:{' ...
+ p_s('homework') p_s64(homework_id()) ...
+ p_s('part') p_s64(part) ...
+ p_s('email') p_s64(email) ...
+ p_s('output') p_s64(output) ...
+ p_s('source') p_s64(source) ...
+ '}'];
+
+end
+
+function s = p_s(str)
+ s = ['s:' num2str(numel(str)) ':"' str '";'];
+end
+
+function s = p_s64(str)
+ str = base64encode(str, '');
+ s = ['s:' num2str(numel(str)) ':"' str '";'];
+end
+
+% =========================== LOGIN HELPERS ===========================
+
+function [login] = loginPrompt()
+ % Prompt for password
+ [login] = basicPrompt();
+end
+
+
+function [login] = basicPrompt()
+ login = input('Login (Email address): ', 's');
+end
+
+
+% =========================== Base64 Encoder ============================
+% Thanks to Peter John Acklam
+%
+
+function y = base64encode(x, eol)
+%BASE64ENCODE Perform base64 encoding on a string.
+%
+% BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending
+% sequence to use; it is optional and defaults to '\n' (ASCII decimal 10).
+% The returned encoded string is broken into lines of no more than 76
+% characters each, and each line will end with EOL unless it is empty. Let
+% EOL be empty if you do not want the encoded string broken into lines.
+%
+% STR and EOL don't have to be strings (i.e., char arrays). The only
+% requirement is that they are vectors containing values in the range 0-255.
+%
+% This function may be used to encode strings into the Base64 encoding
+% specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The
+% Base64 encoding is designed to represent arbitrary sequences of octets in a
+% form that need not be humanly readable. A 65-character subset
+% ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per
+% printable character.
+%
+% Examples
+% --------
+%
+% If you want to encode a large file, you should encode it in chunks that are
+% a multiple of 57 bytes. This ensures that the base64 lines line up and
+% that you do not end up with padding in the middle. 57 bytes of data fills
+% one complete base64 line (76 == 57*4/3):
+%
+% If ifid and ofid are two file identifiers opened for reading and writing,
+% respectively, then you can base64 encode the data with
+%
+% while ~feof(ifid)
+% fwrite(ofid, base64encode(fread(ifid, 60*57)));
+% end
+%
+% or, if you have enough memory,
+%
+% fwrite(ofid, base64encode(fread(ifid)));
+%
+% See also BASE64DECODE.
+
+% Author: Peter John Acklam
+% Time-stamp: 2004-02-03 21:36:56 +0100
+% E-mail: pjacklam@online.no
+% URL: http://home.online.no/~pjacklam
+
+ if isnumeric(x)
+ x = num2str(x);
+ end
+
+ % make sure we have the EOL value
+ if nargin < 2
+ eol = sprintf('\n');
+ else
+ if sum(size(eol) > 1) > 1
+ error('EOL must be a vector.');
+ end
+ if any(eol(:) > 255)
+ error('EOL can not contain values larger than 255.');
+ end
+ end
+
+ if sum(size(x) > 1) > 1
+ error('STR must be a vector.');
+ end
+
+ x = uint8(x);
+ eol = uint8(eol);
+
+ ndbytes = length(x); % number of decoded bytes
+ nchunks = ceil(ndbytes / 3); % number of chunks/groups
+ nebytes = 4 * nchunks; % number of encoded bytes
+
+ % add padding if necessary, to make the length of x a multiple of 3
+ if rem(ndbytes, 3)
+ x(end+1 : 3*nchunks) = 0;
+ end
+
+ x = reshape(x, [3, nchunks]); % reshape the data
+ y = repmat(uint8(0), 4, nchunks); % for the encoded data
+
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % Split up every 3 bytes into 4 pieces
+ %
+ % aaaaaabb bbbbcccc ccdddddd
+ %
+ % to form
+ %
+ % 00aaaaaa 00bbbbbb 00cccccc 00dddddd
+ %
+ y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:)
+
+ y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:)
+ y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:)
+
+ y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:)
+ y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:)
+
+ y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:)
+
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % Now perform the following mapping
+ %
+ % 0 - 25 -> A-Z
+ % 26 - 51 -> a-z
+ % 52 - 61 -> 0-9
+ % 62 -> +
+ % 63 -> /
+ %
+ % We could use a mapping vector like
+ %
+ % ['A':'Z', 'a':'z', '0':'9', '+/']
+ %
+ % but that would require an index vector of class double.
+ %
+ z = repmat(uint8(0), size(y));
+ i = y <= 25; z(i) = 'A' + double(y(i));
+ i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i));
+ i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i));
+ i = y == 62; z(i) = '+';
+ i = y == 63; z(i) = '/';
+ y = z;
+
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ % Add padding if necessary.
+ %
+ npbytes = 3 * nchunks - ndbytes; % number of padding bytes
+ if npbytes
+ y(end-npbytes+1 : end) = '='; % '=' is used for padding
+ end
+
+ if isempty(eol)
+
+ % reshape to a row vector
+ y = reshape(y, [1, nebytes]);
+
+ else
+
+ nlines = ceil(nebytes / 76); % number of lines
+ neolbytes = length(eol); % number of bytes in eol string
+
+ % pad data so it becomes a multiple of 76 elements
+ y = [y(:) ; zeros(76 * nlines - numel(y), 1)];
+ y(nebytes + 1 : 76 * nlines) = 0;
+ y = reshape(y, 76, nlines);
+
+ % insert eol strings
+ eol = eol(:);
+ y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines));
+
+ % remove padding, but keep the last eol string
+ m = nebytes + neolbytes * (nlines - 1);
+ n = (76+neolbytes)*nlines - neolbytes;
+ y(m+1 : n) = '';
+
+ % extract and reshape to row vector
+ y = reshape(y, 1, m+neolbytes);
+
+ end
+
+ % output is a character array
+ y = char(y);
+
+end
diff --git a/R_LogR/survey.csv b/R_LogR/survey.csv
new file mode 100644
index 0000000..f39e287
--- /dev/null
+++ b/R_LogR/survey.csv
@@ -0,0 +1,751 @@
+MYDEPV,Price,Income,Age
+1,10,33,37
+0,20,21,55
+1,30,59,55
+1,20,76,44
+0,30,24,37
+0,20,22,32
+1,10,28,32
+1,10,49,38
+0,30,76,43
+1,20,59,55
+0,30,45,32
+0,30,21,46
+0,30,49,44
+0,10,23,30
+1,10,55,55
+0,20,29,32
+1,10,49,44
+0,20,45,32
+0,20,24,37
+0,10,30,32
+0,10,24,55
+1,10,59,55
+0,30,31,32
+0,20,33,32
+0,30,22,32
+0,30,29,32
+0,10,30,32
+0,20,28,32
+1,30,59,55
+0,30,56,43
+1,30,77,43
+1,20,97,18
+0,20,23,32
+0,30,25,37
+0,30,23,32
+0,30,88,43
+0,30,49,44
+1,30,76,44
+1,20,67,25
+1,10,55,55
+0,20,26,37
+1,20,49,44
+1,20,68,25
+0,30,45,32
+1,20,68,43
+0,20,32,35
+1,30,22,55
+1,30,55,55
+1,20,66,43
+0,20,29,32
+1,10,49,44
+1,10,28,32
+1,10,23,37
+0,20,45,32
+0,30,22,37
+1,10,66,25
+0,20,30,32
+0,20,43,27
+0,20,34,55
+0,30,32,32
+1,10,67,25
+0,20,25,27
+1,20,49,38
+0,30,33,55
+0,20,30,32
+1,10,34,37
+0,30,33,32
+0,10,32,27
+0,20,30,32
+1,20,66,25
+0,30,29,32
+1,10,25,37
+1,20,55,55
+0,30,22,32
+1,10,28,38
+0,20,22,44
+0,30,28,32
+0,10,45,32
+1,20,65,22
+1,10,78,21
+1,30,66,25
+1,20,99,25
+0,10,21,44
+0,20,23,37
+0,30,22,37
+1,30,88,43
+0,30,28,32
+1,30,49,55
+1,10,55,55
+0,20,29,32
+0,30,87,43
+1,30,66,25
+1,20,77,22
+1,10,26,37
+0,30,45,32
+0,20,43,22
+1,30,64,33
+0,20,45,32
+0,10,30,32
+0,30,56,43
+0,20,30,32
+0,30,30,32
+1,10,78,25
+1,20,77,43
+1,20,49,38
+0,30,32,35
+0,10,29,32
+1,20,89,22
+0,30,30,32
+1,30,55,55
+0,20,22,32
+0,20,32,32
+0,30,30,32
+0,30,49,44
+1,10,77,43
+1,20,59,55
+0,20,30,32
+0,30,22,27
+1,20,68,25
+1,10,59,55
+1,30,17,23
+0,20,22,32
+1,10,44,43
+1,20,76,21
+0,20,29,32
+1,10,59,55
+0,20,29,32
+0,30,23,30
+1,20,49,44
+0,20,33,32
+0,20,23,32
+1,10,64,33
+1,10,49,44
+1,30,57,25
+1,10,28,32
+0,10,22,32
+0,30,22,44
+0,20,33,23
+0,30,46,43
+0,30,22,32
+1,20,59,55
+0,10,22,32
+1,20,59,55
+1,10,33,24
+0,10,55,44
+0,30,49,38
+1,30,77,25
+0,20,22,37
+1,30,55,55
+1,30,22,25
+1,10,44,37
+0,30,21,37
+1,20,49,44
+1,20,55,55
+0,30,33,32
+0,10,30,32
+0,10,29,32
+0,30,49,38
+1,10,21,37
+1,10,55,25
+0,30,22,32
+0,20,28,32
+0,10,25,27
+1,20,98,43
+1,20,43,37
+0,30,49,38
+1,20,76,43
+0,10,30,32
+0,30,32,27
+1,10,59,55
+0,20,21,27
+0,30,55,44
+1,20,77,24
+0,30,34,37
+1,10,59,55
+1,10,65,25
+1,10,78,65
+0,20,19,46
+1,10,65,22
+1,20,59,55
+1,30,55,27
+0,20,29,32
+1,20,49,38
+0,20,23,38
+1,20,34,37
+0,30,30,32
+1,30,59,55
+1,10,22,25
+1,10,55,23
+0,30,29,32
+0,20,22,32
+0,20,33,27
+1,10,56,43
+1,10,49,44
+1,10,68,25
+0,10,22,32
+0,20,33,32
+0,20,22,27
+0,30,28,32
+0,20,45,32
+0,30,28,38
+0,30,24,27
+0,20,30,32
+0,20,29,32
+0,10,24,32
+1,10,28,32
+1,10,55,55
+0,20,20,47
+0,20,30,32
+0,30,28,32
+0,10,30,32
+0,20,22,37
+0,30,20,47
+0,30,45,32
+0,10,30,32
+0,20,22,27
+1,10,33,25
+0,10,30,32
+0,10,21,55
+0,10,45,32
+1,30,68,25
+0,10,30,32
+1,30,65,22
+0,30,49,44
+1,30,44,25
+0,20,28,32
+1,10,49,32
+1,10,66,43
+0,30,45,32
+1,10,65,25
+1,20,55,23
+1,30,78,21
+1,10,66,22
+0,20,25,37
+0,10,43,22
+1,10,66,43
+0,30,21,55
+0,20,23,27
+0,30,29,32
+1,20,56,43
+0,30,24,27
+1,10,55,44
+1,20,59,55
+0,10,34,25
+0,20,34,23
+1,20,66,25
+0,30,34,25
+0,20,32,32
+0,10,33,27
+1,10,88,23
+0,30,29,32
+0,30,22,27
+1,20,17,23
+1,10,54,25
+1,20,77,25
+1,10,59,55
+0,10,33,32
+0,20,32,37
+0,10,22,37
+1,20,55,37
+1,30,59,55
+0,10,29,32
+1,10,32,32
+1,20,28,38
+1,10,66,25
+0,10,45,32
+1,20,55,55
+0,10,19,46
+0,30,21,44
+1,20,49,44
+0,10,33,32
+0,20,30,32
+1,30,89,22
+0,30,30,32
+0,20,34,25
+1,30,55,55
+0,30,30,32
+0,20,55,44
+0,20,30,32
+1,30,59,55
+0,30,34,55
+0,10,33,23
+0,10,30,32
+0,10,45,32
+0,10,29,32
+0,30,78,43
+0,30,30,32
+0,30,22,37
+1,20,49,44
+1,20,49,38
+1,30,33,24
+1,20,57,25
+1,10,17,23
+1,10,55,55
+1,10,76,21
+0,10,29,32
+0,10,23,32
+0,20,33,55
+0,30,29,32
+0,20,29,32
+0,10,29,32
+0,20,28,32
+1,20,55,25
+0,10,22,32
+0,30,32,32
+1,20,78,43
+1,10,87,43
+1,10,49,44
+0,10,43,27
+0,30,26,37
+0,20,29,32
+0,20,30,32
+0,10,22,66
+1,30,66,25
+0,10,30,32
+1,10,88,43
+0,20,33,34
+1,10,99,25
+1,20,55,55
+1,10,34,33
+0,30,28,32
+0,10,29,32
+0,30,29,32
+0,30,49,38
+0,30,33,44
+0,10,33,32
+1,10,59,55
+1,20,55,44
+1,20,66,43
+1,10,67,25
+0,10,30,32
+0,30,21,37
+0,30,30,32
+0,20,22,37
+0,20,30,32
+0,30,45,32
+0,30,28,38
+1,20,65,25
+0,30,30,32
+1,10,76,44
+1,10,49,44
+1,30,34,33
+0,30,22,27
+0,10,33,44
+0,10,30,32
+1,30,55,44
+1,20,77,25
+0,10,21,27
+1,10,76,43
+0,20,22,45
+0,30,29,32
+0,20,21,37
+0,30,33,37
+0,20,43,24
+1,10,59,55
+1,10,55,37
+1,20,49,44
+1,30,88,23
+0,20,25,37
+0,30,55,37
+0,10,34,55
+0,20,28,32
+0,30,30,32
+0,30,28,32
+0,10,45,32
+1,10,59,55
+0,30,29,32
+0,20,24,32
+0,10,30,32
+1,10,77,25
+1,20,87,43
+0,10,23,38
+1,10,28,38
+1,30,98,43
+0,20,33,32
+1,10,59,55
+0,20,45,32
+1,20,67,25
+0,10,21,46
+0,20,22,32
+1,20,28,38
+1,10,21,37
+1,30,44,22
+0,10,33,27
+0,20,28,32
+0,30,29,32
+1,20,78,65
+0,20,24,27
+0,30,67,43
+1,30,97,18
+0,30,28,32
+0,10,30,32
+0,30,24,55
+0,20,33,37
+0,30,33,32
+1,20,33,24
+1,30,55,25
+0,10,33,34
+1,10,55,55
+0,10,24,37
+0,10,30,32
+0,10,22,37
+0,30,22,45
+0,30,30,32
+1,30,55,55
+1,30,66,25
+0,30,29,32
+1,10,22,55
+0,30,29,32
+0,10,30,32
+0,30,30,32
+0,30,33,23
+0,20,31,32
+1,30,55,55
+0,30,29,32
+0,10,32,35
+0,30,33,32
+0,30,30,32
+1,10,49,44
+0,30,23,38
+1,20,64,33
+1,20,78,43
+1,10,67,43
+1,30,78,65
+0,20,33,23
+0,30,49,44
+1,10,28,32
+0,20,28,32
+0,20,30,32
+0,20,30,32
+0,30,22,37
+1,10,49,44
+1,10,88,43
+1,10,32,32
+1,20,33,43
+1,20,56,26
+0,30,44,37
+0,20,32,27
+0,10,22,37
+0,20,33,27
+1,10,98,43
+0,20,21,37
+0,30,30,32
+0,30,31,32
+0,30,33,23
+0,30,30,32
+0,20,29,32
+0,30,29,32
+1,20,49,38
+1,30,59,55
+1,30,59,55
+0,30,43,27
+0,30,21,54
+0,10,22,44
+1,10,56,26
+0,30,30,32
+0,10,22,27
+1,10,68,25
+1,10,66,25
+1,30,77,25
+0,20,28,32
+0,30,49,44
+0,10,33,32
+1,30,33,25
+1,10,28,32
+0,20,22,27
+0,20,33,32
+0,20,30,32
+1,30,33,43
+1,10,33,43
+1,20,59,55
+0,10,34,23
+0,30,49,44
+1,10,77,22
+1,20,49,44
+1,10,56,43
+1,20,65,25
+0,10,23,27
+1,10,78,43
+1,30,55,55
+0,20,22,66
+1,10,59,55
+0,10,25,37
+1,10,59,55
+0,30,33,32
+0,10,45,32
+0,20,22,32
+0,20,28,32
+0,10,21,54
+1,10,44,22
+0,30,43,37
+0,20,45,32
+0,20,25,27
+1,20,49,44
+0,30,43,22
+0,10,33,55
+1,10,55,23
+0,10,22,32
+0,30,29,32
+0,10,30,32
+1,20,22,55
+0,20,33,44
+1,30,55,55
+0,10,29,32
+1,30,65,25
+1,30,99,25
+1,30,66,43
+0,10,22,32
+0,20,29,32
+1,30,67,25
+1,20,66,25
+0,20,22,27
+0,30,30,32
+0,30,22,32
+0,20,29,32
+1,10,49,38
+0,30,24,32
+0,20,21,54
+0,10,29,32
+0,30,23,27
+1,10,28,32
+0,30,49,44
+1,30,49,32
+0,20,29,32
+1,20,66,25
+0,30,33,34
+0,20,29,32
+1,10,46,43
+0,10,30,32
+1,30,65,25
+1,20,44,25
+1,10,59,55
+0,10,24,27
+0,10,22,27
+0,20,22,37
+1,10,77,25
+0,20,30,32
+0,10,33,32
+1,10,55,25
+1,30,56,26
+0,30,68,43
+1,20,55,55
+1,30,77,24
+0,30,49,44
+1,30,59,55
+0,10,29,32
+0,30,49,38
+1,20,49,44
+1,20,59,55
+0,30,49,44
+1,20,55,27
+0,30,19,46
+0,10,29,32
+0,10,29,32
+1,30,66,43
+1,20,55,55
+1,10,55,55
+1,10,28,32
+0,30,22,32
+1,20,59,55
+0,30,45,32
+1,10,49,38
+1,20,28,38
+0,10,33,32
+1,10,22,37
+0,30,33,27
+0,30,33,32
+1,10,28,38
+1,20,59,55
+0,30,33,37
+1,20,33,25
+1,10,55,55
+0,30,78,43
+1,20,67,43
+1,20,49,32
+0,10,30,32
+1,10,66,25
+1,10,49,38
+1,20,56,43
+1,20,78,25
+1,30,55,55
+0,30,22,37
+1,30,59,55
+1,20,55,55
+0,30,23,37
+1,10,49,44
+1,10,49,38
+0,10,43,24
+0,10,23,32
+1,20,49,44
+0,30,31,32
+0,30,33,27
+0,20,22,37
+1,30,77,22
+1,30,59,55
+0,20,22,32
+1,30,55,23
+0,30,30,32
+1,10,49,44
+0,20,22,32
+1,10,68,43
+1,10,49,55
+1,20,49,55
+0,20,29,32
+0,10,24,27
+1,20,36,37
+0,30,32,37
+1,10,57,25
+0,10,21,37
+1,20,59,55
+0,30,22,32
+0,10,31,32
+0,30,29,32
+1,20,55,25
+1,10,89,22
+0,30,22,66
+0,10,22,27
+0,30,34,23
+0,20,29,32
+1,20,34,33
+0,10,45,32
+0,10,20,47
+1,10,33,37
+0,20,30,32
+0,10,45,32
+0,30,28,38
+0,20,21,37
+1,30,76,21
+0,30,29,32
+0,30,49,38
+0,20,55,36
+1,10,55,27
+0,10,29,32
+0,20,24,27
+1,10,28,32
+0,30,22,27
+0,30,29,32
+1,10,97,18
+1,30,67,25
+1,30,55,55
+0,30,25,37
+1,10,22,37
+0,30,28,32
+0,20,33,32
+0,30,49,44
+1,20,22,25
+1,10,77,24
+0,10,29,32
+0,30,55,36
+0,10,32,37
+1,20,59,55
+0,20,29,32
+1,10,28,38
+1,20,88,43
+0,20,29,32
+0,20,23,30
+1,30,55,25
+1,20,88,43
+1,10,49,44
+1,30,54,25
+1,20,55,55
+0,30,28,32
+1,20,88,23
+0,20,44,37
+0,20,21,46
+1,10,49,38
+1,20,55,23
+0,10,29,32
+1,10,44,25
+0,20,31,32
+0,30,29,32
+0,30,33,24
+0,10,33,23
+0,10,31,32
+1,30,59,55
+0,10,22,27
+0,10,22,32
+1,20,55,55
+1,10,43,37
+0,30,22,32
+0,10,25,27
+0,20,31,32
+0,20,29,32
+1,20,44,43
+0,20,45,32
+0,10,29,32
+1,30,55,23
+0,20,30,32
+0,30,30,32
+1,10,49,44
+0,20,30,32
+0,30,25,27
+0,10,29,32
+0,20,33,24
+1,20,55,55
+0,30,44,43
+0,10,29,32
+1,10,36,37
+0,30,21,27
+1,20,66,43
+0,30,49,44
+0,30,36,37
+0,30,30,32
+1,20,88,23
+1,20,49,38
+0,30,45,32
+1,20,46,43
+0,20,21,44
+1,20,66,22
+0,30,23,32
+1,20,59,55
+0,10,22,45
+0,20,30,32
+0,10,33,24
+0,10,29,32
+0,30,29,32
+0,10,31,32
+1,10,78,43
+0,20,33,37
+1,20,78,21
+1,10,88,23
+1,20,59,55
+1,30,59,55
+0,30,43,24
+1,30,78,25
+1,30,88,23
+1,30,66,22
+1,20,54,25
+0,20,45,32
+1,20,49,44
+0,20,24,55
+1,10,66,43
+1,20,44,22
+1,10,55,55
+1,30,59,55
+0,20,30,32
+0,10,22,32
+1,20,49,44
+0,30,66,43
+1,30,68,25
+1,30,59,55
+0,20,28,38
+1,10,59,55
+0,20,29,32
+1,10,55,55
+0,30,25,27
+0,10,29,32
+0,10,55,36
+0,30,21,37
+0,30,28,38 \ No newline at end of file