aboutsummaryrefslogtreecommitdiff
path: root/Fundamentals_of_Accelerated_Data_Science/3-08_k-means_dask.ipynb
diff options
context:
space:
mode:
authorleshe4ka46 <alex9102naid1@ya.ru>2025-10-18 12:25:53 +0300
committerleshe4ka46 <alex9102naid1@ya.ru>2025-10-18 12:25:53 +0300
commit910a222fa60ce6ea0831f2956470b8a0b9f62670 (patch)
tree1d6bbccafb667731ad127f93390761100fc11b53 /Fundamentals_of_Accelerated_Data_Science/3-08_k-means_dask.ipynb
parent35b9040e4104b0e79bf243a2c9769c589f96e2c4 (diff)
nvidia2
Diffstat (limited to 'Fundamentals_of_Accelerated_Data_Science/3-08_k-means_dask.ipynb')
-rw-r--r--Fundamentals_of_Accelerated_Data_Science/3-08_k-means_dask.ipynb669
1 files changed, 669 insertions, 0 deletions
diff --git a/Fundamentals_of_Accelerated_Data_Science/3-08_k-means_dask.ipynb b/Fundamentals_of_Accelerated_Data_Science/3-08_k-means_dask.ipynb
new file mode 100644
index 0000000..00782f4
--- /dev/null
+++ b/Fundamentals_of_Accelerated_Data_Science/3-08_k-means_dask.ipynb
@@ -0,0 +1,669 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<img src=\"./images/DLI_Header.png\" width=400/>"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Fundamentals of Accelerated Data Science # "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 08 - Multi-GPU K-Means with Dask ##\n",
+ "\n",
+ "**Table of Contents**\n",
+ "<br>\n",
+ "This notebook uses GPU-accelerated K-means to identify population clusters in a multi-node, multi-GPU scalable way with Dask. This notebook covers the below sections: \n",
+ "1. [Environment](#Environment)\n",
+ "2. [Load and Persist Data](#Load-and-Persist-Data)\n",
+ "3. [Training the Model](#Training-the-Model)\n",
+ " * [Exercise #1 - Count Members of the Southernmost Cluster](#Exercise-#1---Count-Members-of-the-Southernmost-Cluster)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Environment ##\n",
+ "First we import the needed modules to create a Dask cuDF cluster. As we did before, we need to import CUDA context creators after setting up the cluster so they don't lock to a single device. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import subprocess\n",
+ "import logging\n",
+ "\n",
+ "from dask.distributed import Client, wait, progress\n",
+ "from dask_cuda import LocalCUDACluster"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import cudf\n",
+ "import dask_cudf\n",
+ "\n",
+ "import cuml\n",
+ "from cuml.dask.cluster import KMeans"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# create cluster\n",
+ "cmd = \"hostname --all-ip-addresses\"\n",
+ "process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE)\n",
+ "output, error = process.communicate()\n",
+ "IPADDR = str(output.decode()).split()[0]\n",
+ "\n",
+ "cluster = LocalCUDACluster(ip=IPADDR, silence_logs=logging.ERROR)\n",
+ "client = Client(cluster)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Load and Persist Data ##\n",
+ "We will begin by loading the data, The data set has the two grid coordinate columns, `easting` and `northing`, derived from the main population data set we have prepared."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ddf = dask_cudf.read_csv('./data/uk_pop5x_coords.csv', dtype=['float32', 'float32'])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Training the Model ##\n",
+ "Training the K-means model is very similar to both the scikit-learn version and the cuML single-GPU version--by setting up the client and importing from the `cuml.dask.cluster` module, the algorithm will automatically use the local Dask cluster we have set up.\n",
+ "\n",
+ "Note that calling `.fit` triggers Dask computation.\n",
+ "\n",
+ "Once we have the fit model, we extract the cluster centers and rename the columns from their generic `0` and `1` to reflect the data on which they were trained."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 5.17 s, sys: 2.95 s, total: 8.12 s\n",
+ "Wall time: 1min 57s\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "<style>#sk-container-id-1 {\n",
+ " /* Definition of color scheme common for light and dark mode */\n",
+ " --sklearn-color-text: black;\n",
+ " --sklearn-color-line: gray;\n",
+ " /* Definition of color scheme for unfitted estimators */\n",
+ " --sklearn-color-unfitted-level-0: #fff5e6;\n",
+ " --sklearn-color-unfitted-level-1: #f6e4d2;\n",
+ " --sklearn-color-unfitted-level-2: #ffe0b3;\n",
+ " --sklearn-color-unfitted-level-3: chocolate;\n",
+ " /* Definition of color scheme for fitted estimators */\n",
+ " --sklearn-color-fitted-level-0: #f0f8ff;\n",
+ " --sklearn-color-fitted-level-1: #d4ebff;\n",
+ " --sklearn-color-fitted-level-2: #b3dbfd;\n",
+ " --sklearn-color-fitted-level-3: cornflowerblue;\n",
+ "\n",
+ " /* Specific color for light theme */\n",
+ " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
+ " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
+ " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
+ " --sklearn-color-icon: #696969;\n",
+ "\n",
+ " @media (prefers-color-scheme: dark) {\n",
+ " /* Redefinition of color scheme for dark theme */\n",
+ " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
+ " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
+ " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
+ " --sklearn-color-icon: #878787;\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 {\n",
+ " color: var(--sklearn-color-text);\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 pre {\n",
+ " padding: 0;\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 input.sk-hidden--visually {\n",
+ " border: 0;\n",
+ " clip: rect(1px 1px 1px 1px);\n",
+ " clip: rect(1px, 1px, 1px, 1px);\n",
+ " height: 1px;\n",
+ " margin: -1px;\n",
+ " overflow: hidden;\n",
+ " padding: 0;\n",
+ " position: absolute;\n",
+ " width: 1px;\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-dashed-wrapped {\n",
+ " border: 1px dashed var(--sklearn-color-line);\n",
+ " margin: 0 0.4em 0.5em 0.4em;\n",
+ " box-sizing: border-box;\n",
+ " padding-bottom: 0.4em;\n",
+ " background-color: var(--sklearn-color-background);\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-container {\n",
+ " /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
+ " but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
+ " so we also need the `!important` here to be able to override the\n",
+ " default hidden behavior on the sphinx rendered scikit-learn.org.\n",
+ " See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
+ " display: inline-block !important;\n",
+ " position: relative;\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-text-repr-fallback {\n",
+ " display: none;\n",
+ "}\n",
+ "\n",
+ "div.sk-parallel-item,\n",
+ "div.sk-serial,\n",
+ "div.sk-item {\n",
+ " /* draw centered vertical line to link estimators */\n",
+ " background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
+ " background-size: 2px 100%;\n",
+ " background-repeat: no-repeat;\n",
+ " background-position: center center;\n",
+ "}\n",
+ "\n",
+ "/* Parallel-specific style estimator block */\n",
+ "\n",
+ "#sk-container-id-1 div.sk-parallel-item::after {\n",
+ " content: \"\";\n",
+ " width: 100%;\n",
+ " border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
+ " flex-grow: 1;\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-parallel {\n",
+ " display: flex;\n",
+ " align-items: stretch;\n",
+ " justify-content: center;\n",
+ " background-color: var(--sklearn-color-background);\n",
+ " position: relative;\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-parallel-item {\n",
+ " display: flex;\n",
+ " flex-direction: column;\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-parallel-item:first-child::after {\n",
+ " align-self: flex-end;\n",
+ " width: 50%;\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-parallel-item:last-child::after {\n",
+ " align-self: flex-start;\n",
+ " width: 50%;\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-parallel-item:only-child::after {\n",
+ " width: 0;\n",
+ "}\n",
+ "\n",
+ "/* Serial-specific style estimator block */\n",
+ "\n",
+ "#sk-container-id-1 div.sk-serial {\n",
+ " display: flex;\n",
+ " flex-direction: column;\n",
+ " align-items: center;\n",
+ " background-color: var(--sklearn-color-background);\n",
+ " padding-right: 1em;\n",
+ " padding-left: 1em;\n",
+ "}\n",
+ "\n",
+ "\n",
+ "/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
+ "clickable and can be expanded/collapsed.\n",
+ "- Pipeline and ColumnTransformer use this feature and define the default style\n",
+ "- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
+ "*/\n",
+ "\n",
+ "/* Pipeline and ColumnTransformer style (default) */\n",
+ "\n",
+ "#sk-container-id-1 div.sk-toggleable {\n",
+ " /* Default theme specific background. It is overwritten whether we have a\n",
+ " specific estimator or a Pipeline/ColumnTransformer */\n",
+ " background-color: var(--sklearn-color-background);\n",
+ "}\n",
+ "\n",
+ "/* Toggleable label */\n",
+ "#sk-container-id-1 label.sk-toggleable__label {\n",
+ " cursor: pointer;\n",
+ " display: block;\n",
+ " width: 100%;\n",
+ " margin-bottom: 0;\n",
+ " padding: 0.5em;\n",
+ " box-sizing: border-box;\n",
+ " text-align: center;\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n",
+ " /* Arrow on the left of the label */\n",
+ " content: \"▸\";\n",
+ " float: left;\n",
+ " margin-right: 0.25em;\n",
+ " color: var(--sklearn-color-icon);\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n",
+ " color: var(--sklearn-color-text);\n",
+ "}\n",
+ "\n",
+ "/* Toggleable content - dropdown */\n",
+ "\n",
+ "#sk-container-id-1 div.sk-toggleable__content {\n",
+ " max-height: 0;\n",
+ " max-width: 0;\n",
+ " overflow: hidden;\n",
+ " text-align: left;\n",
+ " /* unfitted */\n",
+ " background-color: var(--sklearn-color-unfitted-level-0);\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-toggleable__content.fitted {\n",
+ " /* fitted */\n",
+ " background-color: var(--sklearn-color-fitted-level-0);\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-toggleable__content pre {\n",
+ " margin: 0.2em;\n",
+ " border-radius: 0.25em;\n",
+ " color: var(--sklearn-color-text);\n",
+ " /* unfitted */\n",
+ " background-color: var(--sklearn-color-unfitted-level-0);\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n",
+ " /* unfitted */\n",
+ " background-color: var(--sklearn-color-fitted-level-0);\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
+ " /* Expand drop-down */\n",
+ " max-height: 200px;\n",
+ " max-width: 100%;\n",
+ " overflow: auto;\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
+ " content: \"▾\";\n",
+ "}\n",
+ "\n",
+ "/* Pipeline/ColumnTransformer-specific style */\n",
+ "\n",
+ "#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
+ " color: var(--sklearn-color-text);\n",
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
+ "}\n",
+ "\n",
+ "/* Estimator-specific style */\n",
+ "\n",
+ "/* Colorize estimator box */\n",
+ "#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
+ " /* unfitted */\n",
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
+ " /* fitted */\n",
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n",
+ "#sk-container-id-1 div.sk-label label {\n",
+ " /* The background is the default theme color */\n",
+ " color: var(--sklearn-color-text-on-default-background);\n",
+ "}\n",
+ "\n",
+ "/* On hover, darken the color of the background */\n",
+ "#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n",
+ " color: var(--sklearn-color-text);\n",
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
+ "}\n",
+ "\n",
+ "/* Label box, darken color on hover, fitted */\n",
+ "#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
+ " color: var(--sklearn-color-text);\n",
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
+ "}\n",
+ "\n",
+ "/* Estimator label */\n",
+ "\n",
+ "#sk-container-id-1 div.sk-label label {\n",
+ " font-family: monospace;\n",
+ " font-weight: bold;\n",
+ " display: inline-block;\n",
+ " line-height: 1.2em;\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-label-container {\n",
+ " text-align: center;\n",
+ "}\n",
+ "\n",
+ "/* Estimator-specific */\n",
+ "#sk-container-id-1 div.sk-estimator {\n",
+ " font-family: monospace;\n",
+ " border: 1px dotted var(--sklearn-color-border-box);\n",
+ " border-radius: 0.25em;\n",
+ " box-sizing: border-box;\n",
+ " margin-bottom: 0.5em;\n",
+ " /* unfitted */\n",
+ " background-color: var(--sklearn-color-unfitted-level-0);\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-estimator.fitted {\n",
+ " /* fitted */\n",
+ " background-color: var(--sklearn-color-fitted-level-0);\n",
+ "}\n",
+ "\n",
+ "/* on hover */\n",
+ "#sk-container-id-1 div.sk-estimator:hover {\n",
+ " /* unfitted */\n",
+ " background-color: var(--sklearn-color-unfitted-level-2);\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 div.sk-estimator.fitted:hover {\n",
+ " /* fitted */\n",
+ " background-color: var(--sklearn-color-fitted-level-2);\n",
+ "}\n",
+ "\n",
+ "/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
+ "\n",
+ "/* Common style for \"i\" and \"?\" */\n",
+ "\n",
+ ".sk-estimator-doc-link,\n",
+ "a:link.sk-estimator-doc-link,\n",
+ "a:visited.sk-estimator-doc-link {\n",
+ " float: right;\n",
+ " font-size: smaller;\n",
+ " line-height: 1em;\n",
+ " font-family: monospace;\n",
+ " background-color: var(--sklearn-color-background);\n",
+ " border-radius: 1em;\n",
+ " height: 1em;\n",
+ " width: 1em;\n",
+ " text-decoration: none !important;\n",
+ " margin-left: 1ex;\n",
+ " /* unfitted */\n",
+ " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
+ " color: var(--sklearn-color-unfitted-level-1);\n",
+ "}\n",
+ "\n",
+ ".sk-estimator-doc-link.fitted,\n",
+ "a:link.sk-estimator-doc-link.fitted,\n",
+ "a:visited.sk-estimator-doc-link.fitted {\n",
+ " /* fitted */\n",
+ " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
+ " color: var(--sklearn-color-fitted-level-1);\n",
+ "}\n",
+ "\n",
+ "/* On hover */\n",
+ "div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
+ ".sk-estimator-doc-link:hover,\n",
+ "div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
+ ".sk-estimator-doc-link:hover {\n",
+ " /* unfitted */\n",
+ " background-color: var(--sklearn-color-unfitted-level-3);\n",
+ " color: var(--sklearn-color-background);\n",
+ " text-decoration: none;\n",
+ "}\n",
+ "\n",
+ "div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
+ ".sk-estimator-doc-link.fitted:hover,\n",
+ "div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
+ ".sk-estimator-doc-link.fitted:hover {\n",
+ " /* fitted */\n",
+ " background-color: var(--sklearn-color-fitted-level-3);\n",
+ " color: var(--sklearn-color-background);\n",
+ " text-decoration: none;\n",
+ "}\n",
+ "\n",
+ "/* Span, style for the box shown on hovering the info icon */\n",
+ ".sk-estimator-doc-link span {\n",
+ " display: none;\n",
+ " z-index: 9999;\n",
+ " position: relative;\n",
+ " font-weight: normal;\n",
+ " right: .2ex;\n",
+ " padding: .5ex;\n",
+ " margin: .5ex;\n",
+ " width: min-content;\n",
+ " min-width: 20ex;\n",
+ " max-width: 50ex;\n",
+ " color: var(--sklearn-color-text);\n",
+ " box-shadow: 2pt 2pt 4pt #999;\n",
+ " /* unfitted */\n",
+ " background: var(--sklearn-color-unfitted-level-0);\n",
+ " border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
+ "}\n",
+ "\n",
+ ".sk-estimator-doc-link.fitted span {\n",
+ " /* fitted */\n",
+ " background: var(--sklearn-color-fitted-level-0);\n",
+ " border: var(--sklearn-color-fitted-level-3);\n",
+ "}\n",
+ "\n",
+ ".sk-estimator-doc-link:hover span {\n",
+ " display: block;\n",
+ "}\n",
+ "\n",
+ "/* \"?\"-specific style due to the `<a>` HTML tag */\n",
+ "\n",
+ "#sk-container-id-1 a.estimator_doc_link {\n",
+ " float: right;\n",
+ " font-size: 1rem;\n",
+ " line-height: 1em;\n",
+ " font-family: monospace;\n",
+ " background-color: var(--sklearn-color-background);\n",
+ " border-radius: 1rem;\n",
+ " height: 1rem;\n",
+ " width: 1rem;\n",
+ " text-decoration: none;\n",
+ " /* unfitted */\n",
+ " color: var(--sklearn-color-unfitted-level-1);\n",
+ " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 a.estimator_doc_link.fitted {\n",
+ " /* fitted */\n",
+ " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
+ " color: var(--sklearn-color-fitted-level-1);\n",
+ "}\n",
+ "\n",
+ "/* On hover */\n",
+ "#sk-container-id-1 a.estimator_doc_link:hover {\n",
+ " /* unfitted */\n",
+ " background-color: var(--sklearn-color-unfitted-level-3);\n",
+ " color: var(--sklearn-color-background);\n",
+ " text-decoration: none;\n",
+ "}\n",
+ "\n",
+ "#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n",
+ " /* fitted */\n",
+ " background-color: var(--sklearn-color-fitted-level-3);\n",
+ "}\n",
+ "</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>KMeansMG()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;KMeansMG<span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>KMeansMG()</pre></div> </div></div></div></div>"
+ ],
+ "text/plain": [
+ "KMeansMG()"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "dkm = KMeans(n_clusters=20)\n",
+ "dkm.fit(ddf)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "northing float32\n",
+ "easting float32\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "cluster_centers = dkm.cluster_centers_\n",
+ "cluster_centers.columns = ddf.columns\n",
+ "cluster_centers.dtypes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Exercise #1 - Count Members of the Southernmost Cluster ###\n",
+ "Using the `cluster_centers`, identify which cluster is the southernmost (has the lowest `northing` value) with the `nsmallest` method, then use `dkm.predict` to get labels for the data, and finally filter the labels to determine how many individuals the model estimated were in that cluster. \n",
+ "\n",
+ "**Instructions**: <br>\n",
+ "* Modify the `<FIXME>` only and execute the below cell to estimate the number of individuals in the southernmost cluster. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "31435157"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "south_idx = cluster_centers.nsmallest(1, 'northing').index[0]\n",
+ "labels_predicted = dkm.predict(ddf)\n",
+ "labels_predicted[labels_predicted==south_idx].compute().shape[0]"
+ ]
+ },
+ {
+ "cell_type": "raw",
+ "metadata": {},
+ "source": [
+ "\n",
+ "south_idx = cluster_centers.nsmallest(1, 'northing').index[0]\n",
+ "labels_predicted = dkm.predict(ddf)\n",
+ "labels_predicted[labels_predicted==south_idx].compute().shape[0]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Click ... for solution. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import IPython\n",
+ "app = IPython.Application.instance()\n",
+ "app.kernel.do_shutdown(True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Well Done!**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "<img src=\"./images/DLI_Header.png\" width=400/>"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.15"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}