aboutsummaryrefslogtreecommitdiff
path: root/Computer_Vision_for_Industrial_Inspection/2/log_file_resnet.txt
diff options
context:
space:
mode:
authorleshe4ka46 <alex9102naid1@ya.ru>2025-12-25 21:28:30 +0300
committerleshe4ka46 <alex9102naid1@ya.ru>2025-12-25 21:28:30 +0300
commit53f20d58628171934c097dff5602fe17765eae99 (patch)
tree83f7344f76924ffd0aa81c2fdc4ee09fa3de9459 /Computer_Vision_for_Industrial_Inspection/2/log_file_resnet.txt
parent175ac10904d0f31c3ffeeeed507c8914f13d0b15 (diff)
finishHEADmain
Diffstat (limited to 'Computer_Vision_for_Industrial_Inspection/2/log_file_resnet.txt')
-rw-r--r--Computer_Vision_for_Industrial_Inspection/2/log_file_resnet.txt374
1 files changed, 374 insertions, 0 deletions
diff --git a/Computer_Vision_for_Industrial_Inspection/2/log_file_resnet.txt b/Computer_Vision_for_Industrial_Inspection/2/log_file_resnet.txt
new file mode 100644
index 0000000..3442fb0
--- /dev/null
+++ b/Computer_Vision_for_Industrial_Inspection/2/log_file_resnet.txt
@@ -0,0 +1,374 @@
+Using TensorFlow backend.
+WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
+WARNING:tensorflow:TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
+WARNING: TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
+WARNING:tensorflow:TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
+WARNING: TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
+WARNING:tensorflow:TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
+WARNING: TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
+/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/utils/helper.py:150: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
+ def random_hue(img, max_delta=10.0):
+/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/utils/helper.py:173: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
+ def random_saturation(img, max_shift):
+/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/utils/helper.py:183: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
+ def random_contrast(img, center, max_contrast_scale):
+/usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/utils/helper.py:192: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
+ def random_shift(x_img, shift_stddev):
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:44: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:44: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.
+
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:46: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:46: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
+
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:157: The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.set_verbosity instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:157: The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.set_verbosity instead.
+
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:157: The name tf.logging.INFO is deprecated. Please use tf.compat.v1.logging.INFO instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/makenet/scripts/evaluate.py:157: The name tf.logging.INFO is deprecated. Please use tf.compat.v1.logging.INFO instead.
+
+INFO: Loading experiment spec at /workspace/tao-experiments/spec_files/resnet50/config.txt.
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
+
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.
+
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:245: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:245: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
+
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/third_party/keras/tensorflow_backend.py:199: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/third_party/keras/tensorflow_backend.py:199: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.
+
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.
+
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
+
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.
+
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.
+
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/keras/optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.
+
+WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:3295: The name tf.log is deprecated. Please use tf.math.log instead.
+
+WARNING: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:3295: The name tf.log is deprecated. Please use tf.math.log instead.
+
+__________________________________________________________________________________________________
+Layer (type) Output Shape Param # Connected to
+==================================================================================================
+input_1 (InputLayer) (None, 3, 224, 224) 0
+__________________________________________________________________________________________________
+conv1 (Conv2D) (None, 64, 112, 112) 9408 input_1[0][0]
+__________________________________________________________________________________________________
+activation_1 (Activation) (None, 64, 112, 112) 0 conv1[0][0]
+__________________________________________________________________________________________________
+block_1a_conv_1 (Conv2D) (None, 64, 56, 56) 4096 activation_1[0][0]
+__________________________________________________________________________________________________
+block_1a_relu_1 (Activation) (None, 64, 56, 56) 0 block_1a_conv_1[0][0]
+__________________________________________________________________________________________________
+block_1a_conv_2 (Conv2D) (None, 64, 56, 56) 36864 block_1a_relu_1[0][0]
+__________________________________________________________________________________________________
+block_1a_relu_2 (Activation) (None, 64, 56, 56) 0 block_1a_conv_2[0][0]
+__________________________________________________________________________________________________
+block_1a_conv_3 (Conv2D) (None, 256, 56, 56) 16384 block_1a_relu_2[0][0]
+__________________________________________________________________________________________________
+block_1a_conv_shortcut (Conv2D) (None, 256, 56, 56) 16384 activation_1[0][0]
+__________________________________________________________________________________________________
+add_1 (Add) (None, 256, 56, 56) 0 block_1a_conv_3[0][0]
+ block_1a_conv_shortcut[0][0]
+__________________________________________________________________________________________________
+block_1a_relu (Activation) (None, 256, 56, 56) 0 add_1[0][0]
+__________________________________________________________________________________________________
+block_1b_conv_1 (Conv2D) (None, 64, 56, 56) 16384 block_1a_relu[0][0]
+__________________________________________________________________________________________________
+block_1b_relu_1 (Activation) (None, 64, 56, 56) 0 block_1b_conv_1[0][0]
+__________________________________________________________________________________________________
+block_1b_conv_2 (Conv2D) (None, 64, 56, 56) 36864 block_1b_relu_1[0][0]
+__________________________________________________________________________________________________
+block_1b_relu_2 (Activation) (None, 64, 56, 56) 0 block_1b_conv_2[0][0]
+__________________________________________________________________________________________________
+block_1b_conv_3 (Conv2D) (None, 256, 56, 56) 16384 block_1b_relu_2[0][0]
+__________________________________________________________________________________________________
+add_2 (Add) (None, 256, 56, 56) 0 block_1b_conv_3[0][0]
+ block_1a_relu[0][0]
+__________________________________________________________________________________________________
+block_1b_relu (Activation) (None, 256, 56, 56) 0 add_2[0][0]
+__________________________________________________________________________________________________
+block_1c_conv_1 (Conv2D) (None, 64, 56, 56) 16384 block_1b_relu[0][0]
+__________________________________________________________________________________________________
+block_1c_relu_1 (Activation) (None, 64, 56, 56) 0 block_1c_conv_1[0][0]
+__________________________________________________________________________________________________
+block_1c_conv_2 (Conv2D) (None, 64, 56, 56) 36864 block_1c_relu_1[0][0]
+__________________________________________________________________________________________________
+block_1c_relu_2 (Activation) (None, 64, 56, 56) 0 block_1c_conv_2[0][0]
+__________________________________________________________________________________________________
+block_1c_conv_3 (Conv2D) (None, 256, 56, 56) 16384 block_1c_relu_2[0][0]
+__________________________________________________________________________________________________
+add_3 (Add) (None, 256, 56, 56) 0 block_1c_conv_3[0][0]
+ block_1b_relu[0][0]
+__________________________________________________________________________________________________
+block_1c_relu (Activation) (None, 256, 56, 56) 0 add_3[0][0]
+__________________________________________________________________________________________________
+block_2a_conv_1 (Conv2D) (None, 128, 28, 28) 32768 block_1c_relu[0][0]
+__________________________________________________________________________________________________
+block_2a_relu_1 (Activation) (None, 128, 28, 28) 0 block_2a_conv_1[0][0]
+__________________________________________________________________________________________________
+block_2a_conv_2 (Conv2D) (None, 128, 28, 28) 147456 block_2a_relu_1[0][0]
+__________________________________________________________________________________________________
+block_2a_relu_2 (Activation) (None, 128, 28, 28) 0 block_2a_conv_2[0][0]
+__________________________________________________________________________________________________
+block_2a_conv_3 (Conv2D) (None, 512, 28, 28) 65536 block_2a_relu_2[0][0]
+__________________________________________________________________________________________________
+block_2a_conv_shortcut (Conv2D) (None, 512, 28, 28) 131072 block_1c_relu[0][0]
+__________________________________________________________________________________________________
+add_4 (Add) (None, 512, 28, 28) 0 block_2a_conv_3[0][0]
+ block_2a_conv_shortcut[0][0]
+__________________________________________________________________________________________________
+block_2a_relu (Activation) (None, 512, 28, 28) 0 add_4[0][0]
+__________________________________________________________________________________________________
+block_2b_conv_1 (Conv2D) (None, 128, 28, 28) 65536 block_2a_relu[0][0]
+__________________________________________________________________________________________________
+block_2b_relu_1 (Activation) (None, 128, 28, 28) 0 block_2b_conv_1[0][0]
+__________________________________________________________________________________________________
+block_2b_conv_2 (Conv2D) (None, 128, 28, 28) 147456 block_2b_relu_1[0][0]
+__________________________________________________________________________________________________
+block_2b_relu_2 (Activation) (None, 128, 28, 28) 0 block_2b_conv_2[0][0]
+__________________________________________________________________________________________________
+block_2b_conv_3 (Conv2D) (None, 512, 28, 28) 65536 block_2b_relu_2[0][0]
+__________________________________________________________________________________________________
+add_5 (Add) (None, 512, 28, 28) 0 block_2b_conv_3[0][0]
+ block_2a_relu[0][0]
+__________________________________________________________________________________________________
+block_2b_relu (Activation) (None, 512, 28, 28) 0 add_5[0][0]
+__________________________________________________________________________________________________
+block_2c_conv_1 (Conv2D) (None, 128, 28, 28) 65536 block_2b_relu[0][0]
+__________________________________________________________________________________________________
+block_2c_relu_1 (Activation) (None, 128, 28, 28) 0 block_2c_conv_1[0][0]
+__________________________________________________________________________________________________
+block_2c_conv_2 (Conv2D) (None, 128, 28, 28) 147456 block_2c_relu_1[0][0]
+__________________________________________________________________________________________________
+block_2c_relu_2 (Activation) (None, 128, 28, 28) 0 block_2c_conv_2[0][0]
+__________________________________________________________________________________________________
+block_2c_conv_3 (Conv2D) (None, 512, 28, 28) 65536 block_2c_relu_2[0][0]
+__________________________________________________________________________________________________
+add_6 (Add) (None, 512, 28, 28) 0 block_2c_conv_3[0][0]
+ block_2b_relu[0][0]
+__________________________________________________________________________________________________
+block_2c_relu (Activation) (None, 512, 28, 28) 0 add_6[0][0]
+__________________________________________________________________________________________________
+block_2d_conv_1 (Conv2D) (None, 128, 28, 28) 65536 block_2c_relu[0][0]
+__________________________________________________________________________________________________
+block_2d_relu_1 (Activation) (None, 128, 28, 28) 0 block_2d_conv_1[0][0]
+__________________________________________________________________________________________________
+block_2d_conv_2 (Conv2D) (None, 128, 28, 28) 147456 block_2d_relu_1[0][0]
+__________________________________________________________________________________________________
+block_2d_relu_2 (Activation) (None, 128, 28, 28) 0 block_2d_conv_2[0][0]
+__________________________________________________________________________________________________
+block_2d_conv_3 (Conv2D) (None, 512, 28, 28) 65536 block_2d_relu_2[0][0]
+__________________________________________________________________________________________________
+add_7 (Add) (None, 512, 28, 28) 0 block_2d_conv_3[0][0]
+ block_2c_relu[0][0]
+__________________________________________________________________________________________________
+block_2d_relu (Activation) (None, 512, 28, 28) 0 add_7[0][0]
+__________________________________________________________________________________________________
+block_3a_conv_1 (Conv2D) (None, 256, 14, 14) 131072 block_2d_relu[0][0]
+__________________________________________________________________________________________________
+block_3a_relu_1 (Activation) (None, 256, 14, 14) 0 block_3a_conv_1[0][0]
+__________________________________________________________________________________________________
+block_3a_conv_2 (Conv2D) (None, 256, 14, 14) 589824 block_3a_relu_1[0][0]
+__________________________________________________________________________________________________
+block_3a_relu_2 (Activation) (None, 256, 14, 14) 0 block_3a_conv_2[0][0]
+__________________________________________________________________________________________________
+block_3a_conv_3 (Conv2D) (None, 1024, 14, 14) 262144 block_3a_relu_2[0][0]
+__________________________________________________________________________________________________
+block_3a_conv_shortcut (Conv2D) (None, 1024, 14, 14) 524288 block_2d_relu[0][0]
+__________________________________________________________________________________________________
+add_8 (Add) (None, 1024, 14, 14) 0 block_3a_conv_3[0][0]
+ block_3a_conv_shortcut[0][0]
+__________________________________________________________________________________________________
+block_3a_relu (Activation) (None, 1024, 14, 14) 0 add_8[0][0]
+__________________________________________________________________________________________________
+block_3b_conv_1 (Conv2D) (None, 256, 14, 14) 262144 block_3a_relu[0][0]
+__________________________________________________________________________________________________
+block_3b_relu_1 (Activation) (None, 256, 14, 14) 0 block_3b_conv_1[0][0]
+__________________________________________________________________________________________________
+block_3b_conv_2 (Conv2D) (None, 256, 14, 14) 589824 block_3b_relu_1[0][0]
+__________________________________________________________________________________________________
+block_3b_relu_2 (Activation) (None, 256, 14, 14) 0 block_3b_conv_2[0][0]
+__________________________________________________________________________________________________
+block_3b_conv_3 (Conv2D) (None, 1024, 14, 14) 262144 block_3b_relu_2[0][0]
+__________________________________________________________________________________________________
+add_9 (Add) (None, 1024, 14, 14) 0 block_3b_conv_3[0][0]
+ block_3a_relu[0][0]
+__________________________________________________________________________________________________
+block_3b_relu (Activation) (None, 1024, 14, 14) 0 add_9[0][0]
+__________________________________________________________________________________________________
+block_3c_conv_1 (Conv2D) (None, 256, 14, 14) 262144 block_3b_relu[0][0]
+__________________________________________________________________________________________________
+block_3c_relu_1 (Activation) (None, 256, 14, 14) 0 block_3c_conv_1[0][0]
+__________________________________________________________________________________________________
+block_3c_conv_2 (Conv2D) (None, 256, 14, 14) 589824 block_3c_relu_1[0][0]
+__________________________________________________________________________________________________
+block_3c_relu_2 (Activation) (None, 256, 14, 14) 0 block_3c_conv_2[0][0]
+__________________________________________________________________________________________________
+block_3c_conv_3 (Conv2D) (None, 1024, 14, 14) 262144 block_3c_relu_2[0][0]
+__________________________________________________________________________________________________
+add_10 (Add) (None, 1024, 14, 14) 0 block_3c_conv_3[0][0]
+ block_3b_relu[0][0]
+__________________________________________________________________________________________________
+block_3c_relu (Activation) (None, 1024, 14, 14) 0 add_10[0][0]
+__________________________________________________________________________________________________
+block_3d_conv_1 (Conv2D) (None, 256, 14, 14) 262144 block_3c_relu[0][0]
+__________________________________________________________________________________________________
+block_3d_relu_1 (Activation) (None, 256, 14, 14) 0 block_3d_conv_1[0][0]
+__________________________________________________________________________________________________
+block_3d_conv_2 (Conv2D) (None, 256, 14, 14) 589824 block_3d_relu_1[0][0]
+__________________________________________________________________________________________________
+block_3d_relu_2 (Activation) (None, 256, 14, 14) 0 block_3d_conv_2[0][0]
+__________________________________________________________________________________________________
+block_3d_conv_3 (Conv2D) (None, 1024, 14, 14) 262144 block_3d_relu_2[0][0]
+__________________________________________________________________________________________________
+add_11 (Add) (None, 1024, 14, 14) 0 block_3d_conv_3[0][0]
+ block_3c_relu[0][0]
+__________________________________________________________________________________________________
+block_3d_relu (Activation) (None, 1024, 14, 14) 0 add_11[0][0]
+__________________________________________________________________________________________________
+block_3e_conv_1 (Conv2D) (None, 256, 14, 14) 262144 block_3d_relu[0][0]
+__________________________________________________________________________________________________
+block_3e_relu_1 (Activation) (None, 256, 14, 14) 0 block_3e_conv_1[0][0]
+__________________________________________________________________________________________________
+block_3e_conv_2 (Conv2D) (None, 256, 14, 14) 589824 block_3e_relu_1[0][0]
+__________________________________________________________________________________________________
+block_3e_relu_2 (Activation) (None, 256, 14, 14) 0 block_3e_conv_2[0][0]
+__________________________________________________________________________________________________
+block_3e_conv_3 (Conv2D) (None, 1024, 14, 14) 262144 block_3e_relu_2[0][0]
+__________________________________________________________________________________________________
+add_12 (Add) (None, 1024, 14, 14) 0 block_3e_conv_3[0][0]
+ block_3d_relu[0][0]
+__________________________________________________________________________________________________
+block_3e_relu (Activation) (None, 1024, 14, 14) 0 add_12[0][0]
+__________________________________________________________________________________________________
+block_3f_conv_1 (Conv2D) (None, 256, 14, 14) 262144 block_3e_relu[0][0]
+__________________________________________________________________________________________________
+block_3f_relu_1 (Activation) (None, 256, 14, 14) 0 block_3f_conv_1[0][0]
+__________________________________________________________________________________________________
+block_3f_conv_2 (Conv2D) (None, 256, 14, 14) 589824 block_3f_relu_1[0][0]
+__________________________________________________________________________________________________
+block_3f_relu_2 (Activation) (None, 256, 14, 14) 0 block_3f_conv_2[0][0]
+__________________________________________________________________________________________________
+block_3f_conv_3 (Conv2D) (None, 1024, 14, 14) 262144 block_3f_relu_2[0][0]
+__________________________________________________________________________________________________
+add_13 (Add) (None, 1024, 14, 14) 0 block_3f_conv_3[0][0]
+ block_3e_relu[0][0]
+__________________________________________________________________________________________________
+block_3f_relu (Activation) (None, 1024, 14, 14) 0 add_13[0][0]
+__________________________________________________________________________________________________
+block_4a_conv_1 (Conv2D) (None, 512, 14, 14) 524288 block_3f_relu[0][0]
+__________________________________________________________________________________________________
+block_4a_relu_1 (Activation) (None, 512, 14, 14) 0 block_4a_conv_1[0][0]
+__________________________________________________________________________________________________
+block_4a_conv_2 (Conv2D) (None, 512, 14, 14) 2359296 block_4a_relu_1[0][0]
+__________________________________________________________________________________________________
+block_4a_relu_2 (Activation) (None, 512, 14, 14) 0 block_4a_conv_2[0][0]
+__________________________________________________________________________________________________
+block_4a_conv_3 (Conv2D) (None, 2048, 14, 14) 1048576 block_4a_relu_2[0][0]
+__________________________________________________________________________________________________
+block_4a_conv_shortcut (Conv2D) (None, 2048, 14, 14) 2097152 block_3f_relu[0][0]
+__________________________________________________________________________________________________
+add_14 (Add) (None, 2048, 14, 14) 0 block_4a_conv_3[0][0]
+ block_4a_conv_shortcut[0][0]
+__________________________________________________________________________________________________
+block_4a_relu (Activation) (None, 2048, 14, 14) 0 add_14[0][0]
+__________________________________________________________________________________________________
+block_4b_conv_1 (Conv2D) (None, 512, 14, 14) 1048576 block_4a_relu[0][0]
+__________________________________________________________________________________________________
+block_4b_relu_1 (Activation) (None, 512, 14, 14) 0 block_4b_conv_1[0][0]
+__________________________________________________________________________________________________
+block_4b_conv_2 (Conv2D) (None, 512, 14, 14) 2359296 block_4b_relu_1[0][0]
+__________________________________________________________________________________________________
+block_4b_relu_2 (Activation) (None, 512, 14, 14) 0 block_4b_conv_2[0][0]
+__________________________________________________________________________________________________
+block_4b_conv_3 (Conv2D) (None, 2048, 14, 14) 1048576 block_4b_relu_2[0][0]
+__________________________________________________________________________________________________
+add_15 (Add) (None, 2048, 14, 14) 0 block_4b_conv_3[0][0]
+ block_4a_relu[0][0]
+__________________________________________________________________________________________________
+block_4b_relu (Activation) (None, 2048, 14, 14) 0 add_15[0][0]
+__________________________________________________________________________________________________
+block_4c_conv_1 (Conv2D) (None, 512, 14, 14) 1048576 block_4b_relu[0][0]
+__________________________________________________________________________________________________
+block_4c_relu_1 (Activation) (None, 512, 14, 14) 0 block_4c_conv_1[0][0]
+__________________________________________________________________________________________________
+INFO: Processing dataset (evaluation): /workspace/tao-experiments/data/val
+INFO: Calculating per-class P/R and confusion matrix. It may take a while...
+/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
+ _warn_prf(average, modifier, msg_start, len(result))
+/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
+ _warn_prf(average, modifier, msg_start, len(result))
+/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
+ _warn_prf(average, modifier, msg_start, len(result))
+/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
+ _warn_prf(average, modifier, msg_start, len(result))
+/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
+ _warn_prf(average, modifier, msg_start, len(result))
+/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
+ _warn_prf(average, modifier, msg_start, len(result))
+block_4c_conv_2 (Conv2D) (None, 512, 14, 14) 2359296 block_4c_relu_1[0][0]
+__________________________________________________________________________________________________
+block_4c_relu_2 (Activation) (None, 512, 14, 14) 0 block_4c_conv_2[0][0]
+__________________________________________________________________________________________________
+block_4c_conv_3 (Conv2D) (None, 2048, 14, 14) 1048576 block_4c_relu_2[0][0]
+__________________________________________________________________________________________________
+add_16 (Add) (None, 2048, 14, 14) 0 block_4c_conv_3[0][0]
+ block_4b_relu[0][0]
+__________________________________________________________________________________________________
+block_4c_relu (Activation) (None, 2048, 14, 14) 0 add_16[0][0]
+__________________________________________________________________________________________________
+avg_pool (AveragePooling2D) (None, 2048, 1, 1) 0 block_4c_relu[0][0]
+__________________________________________________________________________________________________
+flatten (Flatten) (None, 2048) 0 avg_pool[0][0]
+__________________________________________________________________________________________________
+predictions (Dense) (None, 4) 8196 flatten[0][0]
+==================================================================================================
+Total params: 23,463,108
+Trainable params: 23,453,700
+Non-trainable params: 9,408
+__________________________________________________________________________________________________
+Found 36 images belonging to 4 classes.
+Evaluation Loss: 2.877385245429145
+Evaluation Top K accuracy: 0.8333333333333334
+Found 36 images belonging to 4 classes.
+Confusion Matrix
+[[30 0 0]
+ [ 4 0 0]
+ [ 2 0 0]]
+Classification Report
+ precision recall f1-score support
+
+ C 0.83 1.00 0.91 30
+ Q 0.00 0.00 0.00 0
+ R 0.00 0.00 0.00 4
+ U 0.00 0.00 0.00 2
+
+ micro avg 0.83 0.83 0.83 36
+ macro avg 0.21 0.25 0.23 36
+weighted avg 0.69 0.83 0.76 36
+