function [J, grad] = costFunctionReg(theta, X, y, lambda) %COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization % J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using % theta as the parameter for regularized logistic regression and the % gradient of the cost w.r.t. to the parameters. % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly % J = 0; % grad = zeros(size(theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta. % You should set J to the cost. % Compute the partial derivatives and set grad to the partial % derivatives of the cost w.r.t. each parameter in theta pred = sigmoid(X*theta); J = 1./m .* sum(-y .* log(pred) - (1-y) .* log(1-pred)) + lambda ./ 2 ./ m .* sum(theta.^2); reg = lambda .* theta ./ m; reg(1) = 0; grad = 1 / m .* (X' * (pred - y)) + reg; % ============================================================= end