RNN = Recurrent Neural Network two passes Precision=TP/(TP+FP) - false positive -> 0 Recall=TP/(TP+FN) - tp -> 0 F1=2Precision⋅Recall​/(Precision + Recall) Accuracy = (TP+TN)/(TP+TN+FP+FN) false positive false negative true pred FP A = pred = A true != A FN A = true = A pred != A