From 175ac10904d0f31c3ffeeeed507c8914f13d0b15 Mon Sep 17 00:00:00 2001 From: leshe4ka46 Date: Sat, 13 Dec 2025 19:41:40 +0300 Subject: linr, logr --- R_LogR/mlclass-ex2/ex2.m | 135 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 135 insertions(+) create mode 100644 R_LogR/mlclass-ex2/ex2.m (limited to 'R_LogR/mlclass-ex2/ex2.m') diff --git a/R_LogR/mlclass-ex2/ex2.m b/R_LogR/mlclass-ex2/ex2.m new file mode 100644 index 0000000..c0a7774 --- /dev/null +++ b/R_LogR/mlclass-ex2/ex2.m @@ -0,0 +1,135 @@ +%% Machine Learning Online Class - Exercise 2: Logistic Regression +% +% Instructions +% ------------ +% +% This file contains code that helps you get started on the logistic +% regression exercise. You will need to complete the following functions +% in this exericse: +% +% sigmoid.m +% costFunction.m +% predict.m +% costFunctionReg.m +% +% For this exercise, you will not need to change any code in this file, +% or any other files other than those mentioned above. +% + +%% Initialization +clear ; close all; clc + +%% Load Data +% The first two columns contains the exam scores and the third column +% contains the label. + +data = load('ex2data1.txt'); +X = data(:, [1, 2]); y = data(:, 3); + +%% ==================== Part 1: Plotting ==================== +% We start the exercise by first plotting the data to understand the +% the problem we are working with. + +fprintf(['Plotting data with + indicating (y = 1) examples and o ' ... + 'indicating (y = 0) examples.\n']); + +plotData(X, y); + +% Put some labels +hold on; +% Labels and Legend +xlabel('Exam 1 score') +ylabel('Exam 2 score') + +% Specified in plot order +% legend('Admitted', 'Not admitted') +hold off; + +fprintf('\nProgram paused. Press enter to continue.\n'); +pause; + + +%% ============ Part 2: Compute Cost and Gradient ============ +% In this part of the exercise, you will implement the cost and gradient +% for logistic regression. You neeed to complete the code in +% costFunction.m + +% Setup the data matrix appropriately, and add ones for the intercept term +[m, n] = size(X); + +% Add intercept term to x and X_test +X = [ones(m, 1) X]; + +% Initialize fitting parameters +initial_theta = zeros(n + 1, 1); + +% Compute and display initial cost and gradient +[cost, grad] = costFunction(initial_theta, X, y); + +fprintf('Cost at initial theta (zeros): %f\n', cost); +fprintf('Gradient at initial theta (zeros): \n'); +fprintf(' %f \n', grad); + +fprintf('\nProgram paused. Press enter to continue.\n'); +%pause; + + +%% ============= Part 3: Optimizing using fminunc ============= +% In this exercise, you will use a built-in function (fminunc) to find the +% optimal parameters theta. + +% Set options for fminunc +options = optimset('GradObj', 'on', 'MaxIter', 400); + +% Run fminunc to obtain the optimal theta +% This function will return theta and the cost +[theta, cost] = ... + fminunc(@(t)(costFunction(t, X, y)), initial_theta, options); + +% Print theta to screen +fprintf('Cost at theta found by fminunc: %f\n', cost); +fprintf('theta: \n'); +fprintf(' %f \n', theta); + +% Plot Boundary +plotDecisionBoundary(theta, X, y); + +% Put some labels +hold on; +% Labels and Legend +xlabel('Exam 1 score') +ylabel('Exam 2 score') + +% Specified in plot order +legend('Admitted', 'Not admitted') +hold off; + +fprintf('\nProgram paused. Press enter to continue.\n'); +%pause; + +%% ============== Part 4: Predict and Accuracies ============== +% After learning the parameters, you'll like to use it to predict the outcomes +% on unseen data. In this part, you will use the logistic regression model +% to predict the probability that a student with score 20 on exam 1 and +% score 80 on exam 2 will be admitted. +% +% Furthermore, you will compute the training and test set accuracies of +% our model. +% +% Your task is to complete the code in predict.m + +% Predict probability for a student with score 45 on exam 1 +% and score 85 on exam 2 + +prob = sigmoid([1 45 85] * theta); +fprintf(['For a student with scores 45 and 85, we predict an admission ' ... + 'probability of %f\n\n'], prob); + +% Compute accuracy on our training set +p = predict(theta, X); + +fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100); + +fprintf('\nProgram paused. Press enter to continue.\n'); +%pause; + -- cgit v1.2.3